45 research outputs found

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    Case Report: Overlap Between Long COVID and Functional Neurological Disorders

    No full text
    Long lasting symptoms have been reported in a considerable proportion of patients after a severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection. This condition, defined as either "post-acute coronavirus disease (COVID)," "long COVID," or "long-haul COVID," has also been described in outpatients and in individuals who are asymptomatic during the acute infection. A possible overlap exists between this condition and the functional neurological disorders (FNDs). We report a 23-year-old man who developed, after asymptomatic COVID-19, a complex symptomatology characterized by fatigue, episodic shortness of breath, nocturnal tachycardia, and chest pain. He also complained of attention and memory difficulties, fluctuating limb dysesthesia, and weakness of his left arm. After neurological examination, a diagnosis of FND was made. Notably, the patient was also evaluated at a post-COVID center and received a diagnosis of long COVID-19 syndrome. After 4 months of psychoanalytic psychotherapy and targeted physical therapy in our center for FNDs, dysesthesia and motor symptoms had resolved, and the subjective cognitive complaints had improved significantly. However, the patient had not fully recovered as mild symptoms persisted limiting physical activities. Long-term post COVID symptoms and FNDs may share underlying biological mechanisms, such as stress and inflammation. Our case suggests that functional symptoms may coexist with the long COVID symptoms and may improve with targeted interventions. In patients presenting with new fluctuating symptoms after SARS-CoV-2 infection, the diagnosis of FNDs should be considered, and the positive clinical signs should be carefully investigated

    Can pharmacological manipulation of LTP favor the effects of motor rehabilitation in multiple sclerosis?

    No full text
    BACKGROUND: Synaptic plasticity, the basic mechanism of clinical recovery after brain lesion, can also remarkably influence the clinical course of multiple sclerosis (MS). Physical rehabilitation represents the main treatment option to promote synaptic long-term potentiation (LTP) and to enhance spontaneous recovery of neurological deficits. OBJECTIVES: To overview the role of pharmacological treatment and physical rehabilitation in modulating LTP and enhancing clinical recovery in MS. RESULTS: Drug-induced LTP enhancement can be effectively used to promote functional recovery, alone or combined with rehabilitation. Also, as inflammatory cytokines alter synaptic transmission and plasticity in MS, pharmacological resolution of inflammation can positively influence clinical recovery. Finally, physical exercise could be an independent factor able to preserve or enhance LTP reserve both influencing signaling pathways involved in plasticity induction and maintenance, and decreasing inflammation. FUTURE DIRECTIONS: Better knowledge of LTP determinants may be useful to design specific strategies to promote recovery after a relapse and to reduce the progressive neurological deterioration in MS patients

    Neurophysiology of synaptic functioning in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is an inflammatory immune-mediate disorder of the central nervous system (CNS), primarily affecting the myelin sheath and followed by neurodegeneration. Synaptic alterations are emerging as critical determinants of early neurodegeneration in MS. Inflammation-induced alterations of synaptic transmission and plasticity have been investigated in vitro and also in human MS using transcranial magnetic stimulation (TMS) techniques. Specific inflammatory cytokines alter glutamatergic and GABAergic transmission, resulting in synaptic hyperexcitability. In both experimental autoimmune encephalomyelitis (EAE) and MS, excitotoxic damage and neurodegeneration are found even in the early phases of disease, conversely inflammation persists in the progressive phases. Inflammatory cytokines also affect synaptic plasticity, as both long-term potentiation (LTP) and long-term depression (LTD) are altered in EAE and in MS patients. In particular, inflammation profoundly subverts plasticity and influence both clinical recovery after a relapse and disease course. Regulation of neuronal activity by cytokines plays important roles in the neuro-immune crosstalk involved in inflammation-associated excitotoxic neuronal damage, and in the chance of developing compensatory plasticity. Innate and adaptive immunity interact with the CNS in MS, in line with the concept that cytokines and chemokines, in concert with neurotransmitters and neuropeptides, represent a major communication system in the CNS

    Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas

    No full text
    Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains

    Familiarity for famous faces and names is not equally subtended by the right and left temporal poles. Evidence from an rTMS study

    No full text
    The aims of the present experiment was to investigate: (a) if transient disruption of neural activity in the right (RTP) or left temporal pole (LTP) can interfere with the development of a familiarity feeling to the presentation of faces/written names of famous/unknown people; and (b) if this interference specifically affects the familiarity for faces after inhibition of the RTP and for names after inhibition of the LTP. Twenty healthy volunteers took part in the study. Repetitive transcranial magnetic stimulation (rTMS) was administered online; it disrupted the neural activity of the right or left TP in concomitance with the presentation of each face and name whose familiarity had to be assessed. Furthermore, in a control group, each participant was submitted to a single experimental session in which rTMS was delivered to the vertex in association with the presentation of faces and written names. Since previous rTMS studies have shown that the temporary inactivation of the right and left TP influences the response latencies, but not the number of correct responses, in this study we took into account both the number of correct responses obtained in different experimental conditions and the corresponding response latencies. A three-way factorial ANOVA carried out on the Response Scores showed only a general effect of the Type of Stimuli, due to better performances on names than on faces. This greater familiarity of names is consistent with previous data reported in the literature. In the three-way factorial ANOVA carried out on the Latency Scores, post-hoc analyses showed an increased latency of responses to faces after right stimulation in Latency Total, Latency on Correct responses and Latency on Unfamiliar faces. None of these results were obtained in the control group. These data suggest that rTMS at the level of the RTP preferentially affects the development of familiarity feelings to the presentation of faces of famous people

    Serotonin impairment in CSF of PD patients, without an apparent clinical counterpart

    No full text
    In Parkinson's disease (PD), several studies have detected an impaired serotonin (5-HT) pathway, likely affecting both motor and non-motor domains. However, the precise impact of 5-HT impairment is far from established. Here, we have used a HPLC chromatographic method, in a homogenous cohort (n = 35) of non fluctuating, non dyskinetic PD patients, to assess the concentration of 5-HT and its metabolite 5-HIAA in peripheral cerebrospinal fluid (CSF) obtained from lumbar puncture (LP). LP was performed following three days of therapy withdrawal, in order to vanish the effects of prolonged released dopamine agonists (DA), and in absence of any serotonergic agent. The PD patient group showed a significantly reduced CSF level of both 5-HT and 5-HIAA compared to either age-matched control subjects (n = 18), or Alzheimer's disease patients (n = 20). However, no correlation emerged between 5-HT/5-HIAA concentrations and UPDRS-III (r = -0.12), disease duration (r = -0.1), age (r = -0.27) and MMSE (r = 0.11). Intriguingly, low CSF 5-HT levels did not differ for gender or for motor phenotype (in terms of non-tremor dominant subtype and tremor dominant subtype). Further, low CSF 5-HT levels did not correlate with the presence of depression, apathy or sleep disturbance. Our findings support the contention that 5-HT impairment is a cardinal feature of stable PD, probably representing a hallmark of diffuse Lewy bodies deposition in the brainstem. However, clinical relevance remains uncertain. Given these findings, an add-on therapy with serotonergic agents seems questionable in PD patients, or should be individually tailored, unless severe depression is present
    corecore