2,942 research outputs found

    Super-Earths: A New Class of Planetary Bodies

    Full text link
    Super-Earths, a class of planetary bodies with masses ranging from a few Earth-masses to slightly smaller than Uranus, have recently found a special place in the exoplanetary science. Being slightly larger than a typical terrestrial planet, super-Earths may have physical and dynamical characteristics similar to those of Earth whereas unlike terrestrial planets, they are relatively easier to detect. Because of their sizes, super-Earths can maintain moderate atmospheres and possibly dynamic interiors with plate tectonics. They also seem to be more common around low-mass stars where the habitable zone is in closer distances. This article presents a review of the current state of research on super-Earths, and discusses the models of the formation, dynamical evolution, and possible habitability of these objects. Given the recent advances in detection techniques, the detectability of super-Earths is also discussed, and a review of the prospects of their detection in the habitable zones of low-mass stars is presented.Comment: A (non-technical) review of the literature on the current state ofresearch on super-Earths. The topics include observation, formation, dynamical evolution, habitability, composition, interior dynamics, magnetic field, atmosphere, and propsect of detection. The article has 44 pages, 27 figures, and 203 references. It has been accepted for publication in the journal Contemporary Physics (2011

    Tumor-Derived Mesenchymal Stem Cells Use Distinct Mechanisms to Block the Activity of Natural Killer Cell Subsets.

    Get PDF
    Mesenchymal stem cells (MSCs) display pleiotropic functions, which include secretion of soluble factors with immunosuppressive activity implicated in cancer progression. We compared the immunomodulatory effects on natural killer (NK) cells of paired intratumor (T)- and adjacent non-tumor tissue (N)-derived MSCs from patients with squamous cell lung carcinoma (SCC). We observed that T-MSCs were more strongly immunosuppressive than N-MSCs and affected both NK function and phenotype, as defined by CD56 expression. T-MSCs shifted NK cells toward the CD56 <sup>dim</sup> phenotype and differentially modulated CD56 <sup>bright/dim</sup> subset functions. Whereas MSCs affected both degranulation and activating receptor expression in the CD56 <sup>dim</sup> subset, they primarily inhibited interferon-γ production in the CD56 <sup>bright</sup> subset. Pharmacological inhibition of prostaglandin E2 (PGE2) synthesis and, in some MSCs, interleukin-6 (IL-6) activity restored NK function, whereas NK cell stimulation by PGE2 alone mimicked T-MSC-mediated immunosuppression. Our observations provide insight into how stromal responses to cancer dampen NK cell activity in human lung SCC

    MAC and baseband processors for RF-MIMO WLAN

    Get PDF
    The article describes hardware solutions for the IEEE 802.11 medium access control (MAC) layer and IEEE 802.11a digital baseband in an RF-MIMO WLAN transceiver that performs the signal combining in the analogue domain. Architecture and implementation details of the MAC processor including a hardware accelerator and a 16-bit MACphysical layer (PHY) interface are presented. The proposed hardware solution is tested and verified using a PHY link emulator. Architecture, design, implementation, and test of a reconfigurable digital baseband processor are described too. Description includes the baseband algorithms (the main blocks being MIMO channel estimation and Tx-Rx analogue beamforming), their FPGA-based implementation, baseband printed-circuit-board, and real-time test

    Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons

    Get PDF
    The hyaluronan (HA)-binding function (lectin function) of the leukocyte homing receptor, CD44, is tightly regulated. Herein we address possible mechanisms that regulate CD44 isoform-specific HA binding. Binding studies with melanoma transfectants expressing CD44H, CD44E, or with soluble immunoglobulin fusions of CD44H and CD44E (CD44H-Rg, CD44E-Rg) showed that although both CD44 isoforms can bind HA, CD44H binds HA more efficiently than CD44E. Using CD44-Rg fusion proteins we show that the variably spliced exons in CD44E, V8-V10, specifically reduce the lectin function of CD44, while replacement of V8-V10 by an ICAM-1 immunoglobulin domain restores binding to a level comparable to that of CD44H. Conversely, CD44 bound HA very weakly when exons V8-V10 were replaced with a CD34 mucin domain, which is heavily modified by O-linked glycans. Production of CD44E-Rg or incubation of CD44E-expressing transfectants in the presence of an O-linked glycosylation inhibitor restored HA binding to CD44H-Rg and to cell surface CD44H levels, respectively. We conclude that differential splicing provides a regulatory mechanism for CD44 lectin function and that this effect is due in part to O-linked carbohydrate moieties which are added to the Ser/Thr rich regions encoded by the variably spliced CD44 exons. Alternative splicing resulting in changes in protein glycosylation provide a novel mechanism for the regulation of lectin activit

    Role of preferential weak hybridization between the surface-state of a metal and the oxygen atom in the chemical adsorption mechanism

    No full text
    We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz2 orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer

    Erectile dysfunction is frequent in systemic sclerosis and associated with severe disease: a study of the EULAR Scleroderma Trial and Research group

    Get PDF
    Introduction: Erectile dysfunction (ED) is common in men with systemic sclerosis (SSc) but the demographics, risk factors and treatment coverage for ED are not well known. Method: This study was carried out prospectively in the multinational EULAR Scleroderma Trial and Research database by amending the electronic data-entry system with the International Index of Erectile Function-5 and items related to ED risk factors and treatment. Centres participating in this EULAR Scleroderma Trial and Research substudy were asked to recruit patients consecutively. Results: Of the 130 men studied, only 23 (17.7%) had a normal International Index of Erectile Function-5 score. Thirty-eight per cent of all participants had severe ED (International Index of Erectile Function-5 score ≤ 7). Men with ED were significantly older than subjects without ED (54.8 years vs. 43.3 years, P < 0.001) and more frequently had simultaneous non-SSc-related risk factors such as alcohol consumption. In 82% of SSc patients, the onset of ED was after the manifestation of the first non-Raynaud's symptom (median delay 4.1 years). ED was associated with severe cutaneous, muscular or renal involvement of SSc, elevated pulmonary pressures and restrictive lung disease. ED was treated in only 27.8% of men. The most common treatment was sildenafil, whose efficacy is not established in ED of SSc patients. Conclusions: Severe ED is a common and early problem in men with SSc. Physicians should address modifiable risk factors actively. More research into the pathophysiology, longitudinal development, treatment and psychosocial impact of ED is needed

    Do Postural Constraints Affect Eye, Head and Arm Coordination?

    Get PDF
    If a whole-body reaching task is produced when standing or adopting challenging postures, it is unclear whether changes in attentional demands or the sensorimotor integration necessary for balance control influence the interaction between visuomotor and postural components of the movement. Is gaze control prioritized by the CNS to produce coordinated eye movements with the head and whole-body regardless of movement context? Considering the coupled nature of visuomotor and whole-body postural control during action, this study aimed to understand how changing equilibrium constraints (in the form of different postural configurations) influenced the initiation of eye, head and arm movements. We quantified the eye-head metrics and segmental kinematics as participants executed either isolated gaze shifts or whole-body reaching movements to visual targets. In total, four postural configurations were compared: seated, natural stance, with the feet together (narrow stance), or while balancing on a wooden beam. Contrary to our initial predictions, the lack of distinct changes in: eye-head metrics, timing of eye, head and arm movement initiation, and gaze accuracy, in spite of kinematic differences, suggests that the CNS integrates postural constraints into the control necessary to initiate gaze shifts. This may be achieved by adopting a whole-body gaze strategy that allows for the successful completion of both gaze and reaching goals

    AGE-RELATED EFFECTS OF INCREASING POSTURAL CHALLENGE ON EYE MOVEMENT ONSET LATENCIES TO VISUAL TARGETS

    Get PDF
    When a single light cue is given in the visual field, our eyes orient towards it with an average latency of 200 ms. If a second cue is presented at or around the time of the response to the first, a secondary eye movement occurs that represents a re-orientation to the new target. While studies have shown that eye movement latencies to ‘single-step’ targets may or may not be lengthened with age, secondary eye-movements (during ‘double-step’ displacements) are significantly delayed with increasing age. The aim of this study was to investigate if the postural challenge posed simply by standing (as opposed to sitting) results in significantly longer eye movement latencies in older adults compared to the young. Ten young (65 years) participated in the study. They were required to fixate upon a central target and move their eyes in response to 2 types of stimuli: 1) a single-step perturbation of target position either 15º to the right or left, and 2) a double-step target displacement incorporating an initial target jump to the right or left by 15º, followed after 200 ms, by a shift of target position to the opposite side (e.g., +15º then -15º). All target displacement conditions were executed in sit and stand positions with the participant at the same distance from the targets. Eye movements were recorded using electro-oculography. Older adults did not show significantly longer eye movement latencies than the younger adults for single-step target displacements, and postural configuration (stand compared to sit) had no effect upon latencies for either group. We categorised double-step trials into those during which the second light changed after or before the onset of the eye shift to the first light. For the former category, young participants showed faster secondary eye shifts to the second light in the standing position, while the older adults did not. For the latter category of double-step trial, young participants showed no significant difference between sit and stand secondary eye movement latencies, but older adults were significantly longer standing compared to sitting. The older adults were significantly longer than the younger adults across both postural conditions, regardless of when the second light change occurred during the eye shift to the first light. We suggest that older adults require greater time and perhaps attentional processes to execute eye movements to unexpected changes of target position when faced with the need to maintain standing balance. Keywords: Balance, Ageing, Gaze, Electro-oculography, Target perturbations
    corecore