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Abstract. The hyaluronan (HA)-binding function (lec- 
tin function) of the leukocyte homing receptor, CD44, 
is tightly regulated. Herein we address possible mecha- 
nisms that regulate CD44 isoform-specific H A  binding. 
Binding studies with melanoma transfectants express- 
ing CD44H, CD44E, or with soluble immunoglobulin 
fusions of CD44H and CD44E (CD44H-Rg, CD44E- 
Rg) showed that although both CD44 isoforms can 
bind HA, CD44H binds H A  more efficiently than 
CD44E. Using CD44-Rg fusion proteins we show that 
the variably spliced exons in CD44E, V8-V10, specifi- 
cally reduce the lectin function of CD44, while replace- 
ment of V8-V10 by an ICAM-1 immunoglobulin do- 
main restores binding to a level comparable to that of 

CD44H. Conversely, CD44 bound HA very weakly 
when exons V8-V10 were replaced with a CD34 mucin 
domain, which is heavily modified by O-linked glycans. 
Production of CD44E-Rg or incubation of CD44E- 
expressing transfectants in the presence of an O-linked 
glycosylation inhibitor restored HA binding to CD44H- 
Rg and to cell surface CD44H levels, respectively. We 
conclude that differential splicing provides a regulatory 
mechanism for CD44 lectin function and that this effect 
is due in part to O-linked carbohydrate moieties which 
are added to the Ser/Thr rich regions encoded by the 
variably spliced CD44 exons. Alternative splicing re- 
suiting in changes in protein glycosylation provide a 
novel mechanism for the regulation of lectin activity. 

C 
D44 represents a heterogeneous group of cell sur- 

face and secreted proteins generated by alternate 
splicing of a single gene (47). All CD44 isoforms 

contain at the amino terminus an HA-binding domain which 
is composed of two clusters of positively charged amino 
acids (44, 55). Protein heterogeneity arises predominantly 
from the variable splicing of exons encoding extracellular 
domains located between the invariant hyaluronan(HA) 1- 
binding domains and exons encoding the membrane proxi- 
mal extracellular domain (13,23, 33). Alternative splicing 
of exons encoding the cytoplasmic domain of CD44 has 
also been reported (15, 47). To date at least 18 different al- 
ternatively spliced CD44 isoforms have been reported. 
Cells can express more than one CD44 isoform at a time, 
however, in some cell types one CD44 isoform is preferen- 
tially expressed. Leukocytes predominantly express CD44H 
(50), an isoform whose extracellular domain contains no 
variably spliced extracellular domain exons, while epithe- 
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1. Abbreviat ion used in this paper. HA, hyaluronan; MC, melanoma cells; 
RT-PCR, reverse transcriptase-polymerase chain reaction. 

lial cells express many alternatively spliced isoforms (8, 17, 
30, 51). The CD44 isoforms expressed by a given cell can 
also change in response to differentiation and/or activa- 
tion (1, 28) suggesting that the contribution of CD44 to the 
function of a given cell is not always constant. 

These observations suggest that these different CD44 
molecules are endowed with distinct and possibly multiple 
functions. Indeed, in vitro evidence supporting this hy- 
pothesis has been reported. CD44 is the cell surface recep- 
tor for HA and there is evidence that the binding capaci- 
ties of the various isoforms differ (22, 27, 44, 51). In 
addition, it has been shown that the CD44 isoforms whose 
extracellular domain contains variably spliced exon V3 
can be modified with heparan sulfate and bind to a subset 
of heparin-binding growth factors (6, 22). Other CD44 
functions have not been so clearly assigned to particular 
isoforms, nonetheless, CD44 is a widely distributed multi- 
functional glycoprotein. Among its many physiological func- 
tions, CD44 has been implicated in leukocyte homing (25), 
leukocyte activation (20, 43, 46), extracellular matrix bind- 
ing (2, 9, 24, 54), and cell adhesion and migration (49, 53). 
Recent experiments have shown that abnormal expression 
of CD44 by tumor cells can enhance their ability to grow 
and/or metastasize in vivo suggesting that abnormal expres- 

© The Rockefeller University Press, 0021-9525/95/12/1623/11 $2.00 
The Journal of Cell Biology, Volume 131, Number 6, Part 1, December 1995 1623-1633 1623 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serveur académique lausannois

https://core.ac.uk/display/77162199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sion and/or regulation of CD44 function may play a role in 
some human cancers (5, 17, 51). 

A number of different experimental results lead to the 
conclusion that CD44 functions as a lectin by binding HA. 
These include the demonstration that the binding of H A  
to cells expressing CD44 can be blocked by anti-CD44 
mAbs (32, 35, 41), the finding that a soluble immunoglob- 
ulin fusion of CD44H can bind H A  in a cell-free system 
(44), and the demonstration that a protein recognized by 
mAb K3 which binds to the hamster HA-receptor (52) is 
the hamster homologue of CD44H (2). These results were 
further supported by observations that anti-CD44 mAbs 
could precipitate [3H]HA-binding activity from murine 
and human cell lines, block the binding of labeled-HA to 
the receptor and inhibit the HA-dependent aggregation of 
CD44-expressing cells (9, 16). 

In some cell lines the lectin function of CD44 is regu- 
lated (32, 40). Lesley et al. (32) showed that a number of 
cell lines which expressed high levels of CD44 bind H A  
only after activation with phorbol esters. This observation 
has been confirmed using additional cell lines (21, 31), pe- 
ripheral blood lymphocytes (14), and transfected cell lines 
(35, 38), clearly establishing that in some cell types CD44 
lectin function is tightly regulated. Additional studies indi- 
cate that high affinity binding of CD44 for soluble H A  re- 
quires an intact cytoplasmic domain (35, 38), CD44 aggre- 
gation on the cell surface (34), protein synthesis (42), and 
cytoplasmic domain phosphorylation (45). Also, there is 
evidence that different CD44 isoforms have different HA- 
binding capacities suggesting that alternative splicing plays 
a role in the regulation of the lectin function of CD44 
(22, 51). 

Here we report on the results of experiments designed 
to examine the role of alternative splicing in the regulation 
of CD44 lectin function. Using CD44-negative cell lines 
which were transfected to express either CD44H or CD44E, 
an isoform with an extracellular domain containing vari- 
ably spliced exons V8-V10, we found that cells expressing 
CD44H bound H A  more effectively than cells expressing 
CD44E. This difference was also seen with soluble immu- 
noglobulin fusion of these two CD44 isoforms. Using solu- 
ble forms of CD44 which contain peptide sequences en- 
coded by one or more of the variably spliced exons found 
in CD44E or with a polypeptide fragment obtained from 
ICAM-1, we show that inclusion of the CD44 variably 
spliced exons specifically reduces the ability of CD44E to 
bind HA. We also present the results of experiments 
which suggest that the reduced HA-binding capacity of 
CD44E is due in part to the presence of O-linked carbohy- 
drates which were added to the Ser/Thr rich regions found 
in the variably spliced exons of CD44E (38, 44, 51). 

Materials and Methods 

Cell Culture and Fusion Protein Expression 
CD44 stable transfected human melanoma cell lines, melanoma cells 
(MC), have been previously described (53). MC44H, MC44E, and 
MC44E-trunc express wild-type CD44H, wild-type CD44E, and a CD44E 
deletion mutant which is missing exon E15 and E16 (the junction between 
V10 and E17 is NVNRSWLI), respectively. COS cells were purchased 
from Amer. Type Culture Collection (Rockville, MD), grown in DMEM/ 
10% FBS, and used for transient expression of fusion proteins as previ- 

ously described (2). To generate O-linked deglycosylated CD44E-Rg, and 
CD44H-Rg, 1 mM phenyl-c~-N-acetylgalactosaminide (phenyl-c~-GalNAc) 
(Sigma Immunochemicals, St. Louis, MO) was added to DMEM during 
the protein production phase of the transfection, and to the melanoma 
transfectants for 16 h before testing HA binding. 

FA CS Analysis 
The MC transfected cell lines were washed with PBS and added to stain- 
ing media (RPMI/2% FBS/0.1% azide). The anti-CD44 mAb A3D8 and 
the IgGl isotype-matched control (Sigma Immunochemicals, St. Louis 
MO) were added at 10 i~g/ml, and the cells were incubated at 4°C for 30 
min. Excess antibody was washed away with RPMI and an FITC-labeled 
secondary antibody (Tago, Carmarillo, CA) was added for 30 min at 4°C 
followed by washing the cells two more times. The cells were fixed in 
2% formaldehyde/PBS and analyzed on a FACScan (Becton-Dickinson, 
Mountainview, CA). 

Reverse Transcriptase-PCR 
Total mRNA was obtained from MC, MC44H, MC44E, and MC44E- 
trunc by guanidine isothiocyanate/phenol extraction as previously de- 
scribed (6). A random primer method was used to prepare the cDNA for 
PCR. 10 Ixg of total mRNA was incubated with 1 ILl of 0.1 M Hexamer 
(GIBCO BRL, Gaithersburg, MD) for 10 min at 65°C. Then 4 ILl of 5:,< 
first strand buffer (GIBCO BRL), 0.1 M DDT (GIBCO BRL), 2.5 M 
dNTP's (Boehringer Mannheim Corp., Indianapolis, IN), and 1 I~1 super- 
script RT (GIBCO BRL) was added and incubated for 1 h at 37°C. 30 ~1 
of dH20 was added, and then 3 ixl of the reaction volume was used for 
each PCR reaction. The PCR reactions were carried out in a total volume 
of 50 ~1 with the following reagents added together: (a) 3 ILl of cDNA; (b) 
3 Ixl 1.25 mM dNTP's (Boehringer Mannheim Corp., Indianapolis, IN); (c) 
2.5 ILl each oligonucleotide (10 mM); (d) 5 /~1 10× buffer, and 0.5 U Taq 
DNA polymerase (Boehringer Mannheim Corp.). The oligonucleotides 
used as PCR primers included: (a) CD44-E3-FP, GGGGTGTACATCCTC- 
ACATC; (b) CD44-E13-FP, G A A G G C T T G G A A G A A G A T ;  (c) CD44- 
E17-RP C A A A G C C A A G G C C A A G A G G .  The PCR reaction conditions 
were as follows: 94°C for 5 min; 35 cycles were carried out at 94°C for 30 s, 
54°C at 1 min, 72°C at 1 min 45 s. 

Construction of CD44-Rg Expression Vectors 
The CD44Rg expression vector was generated by subcloning the extracel- 
lular domain coding region from the CD44V10 NarI/KasI cassette cloning 
vector (22) into pCDM8 Ig FC (6). CD44HA-Rg was made by digesting 
CD44V10Rg with BglII and SphI (Gibco BRL, Gaithersburg, MD), puri- 
fying the plasmid on 1% agarose, the ends of the DNA fragment were blunt 
ended by Klenow (Boehringer Mannheim Corp.) in the presence of 2 mM 
dNTPs (Boehringer Mannheim Corp.), and then the plasmid was ligated 
with T4 ligase (GIBCO BRL). PCR was used to clone in the different CD44 
exons and domains from the ICAM-1 and CD34. The CD44 variable spliced 
exons were generated by PCR from CD44E-Rg and the oligonucleotide 
primers used were as follows: (a) CD44V9, V10-Rg insert was created 
with PCR primers CD44-E5-BglII, A G T G A A A G A T C T A G C A C T I ' C A -  
GGAG, and CD44-E13-SphI, ACATGCATGCATFGCITGATGTCA-  
GAGTAGAAG;  (b) CD44V9-Rg required oligonucleotide CD44-E13- 
SphI in conjunction with CD44-E13-BglI, G A A G A T C T C A G A G T A A T -  
TCTCAGAGCITCT.  The PCR template used to clone the Ig-domain from 
ICAM-1 was ICAM-1-Rg (10) and the PCR primers were ICAM-1-950-FP, 
GAAGATCTITTCCGGGGCCCAACGTG, and ICAM-l-1200-RP, ACA- 
TGCATGCTCGGGGGCCATACAGGAC. CD44/CD34-Rg insert was gen- 
erated from the template CD34-Rg (48) with oligonucleotides CD34-368-FP, 
GCCGCCAGATCTACTGCTACCCCAGAGTTACCT, and CD34-764-RP, 
GCCGCCGCATGCGTCACTFAGGATAGGAGAAGA.  

Hyaluronic Acid-binding Assay 
Transfectants were cultured in DME supplemented with 10% FBS and 1.5 
mg/ml G418 (GIBCO BRL), and/or 2 mM phenyl-et-GalNAc for 16 h. 
Cells were then washed, detached with PBS/0.5 mM EDTA, washed and 
radiolabeled with 100 mCi 5tCr (New Engand Nuclear, Boston, MA) for I h 
at 37°C. After several washes in DME, 104 radiolabeled cells were seeded 
per well onto 96-well plates previously coated with 5 mg/ml HA (Sigma), 
and allowed to attach for 30 min at 4°C. Nonadherent cells were removed 
by washing, adherent cells lysed with 1% SDS, and incorporated radioac- 
tivity determined in a 13 counter. 

The Journal of Cell Biology, Volume 131, 1995 1624 



Binding of the purified fusion proteins to HA was assessed using an 
ELISA assay as previously described (44). The protein concentration was 
determined using the BioRad (Bradford) protein determination assay 
(Richmond, CA), and then each fusion protein was run on an SDS-PAGE 
gel and silver stained to confirm the protein concentrations. To demon- 
strate the specificity of the two assays, CD44-Rg interaction with HA 
w e r e  blocked by using an anti-CD44 specific mAb MEM-85 (DeDiCa, 
Carlsbad, CA) and/or Bric235 (provided by Frances Spring). The ELISAs 
were also done in the presence of isotype-matched control mAbs pur- 
chased from Sigma. 

Glycosylation Determination 
To verify that the O-linked glycosylation inhibitor, phenyl-a-GalNAc, was 
generating deglycosylated fusion proteins the CD44-Rg proteins (100 ng) 
were analyzed by SDS-PAGE, transferred onto Nitrocellulose, and then 
detected by using MAA (Maackia amurensis Agglutinin) from a DIG 
Glycan Differentiation Kit as recommended by the manufacturer (Boehr- 
inger Mannheim Corp.). 

Results 

Melanoma Transfectants Expressing CD44H 
Bind HA More Effectively Than the Same Cells 
Expressing CD44E 

Previous reports suggested that CD44E, a CD44 isoform 
containing variably spliced exons V8-V10, had a reduced 
lectin function when compared with CD44H, the CD44 
isoform containing no variably spliced exons. B cell lym- 
phoma (Namalwa) (51) or T cell leukemia (Jurkat) (38) 
cell transfectants expressing one or the other CD44 iso- 
forms were used to examine the ability of these two CD44 
isoforms to bind HA. To examine if this difference in 
the HA-binding activity of membrane-bound CD44H and 
CD44E extended to other cell types we prepared mela- 
noma cell transfectants expressing either CD44H or CD44E. 
This cell line was chosen since it does not express any 
CD44 isoforms (Fig. 1 A). In addition, we elected to use 
stable transfectants rather than transient transfectants 
since this would allow us to select CD44H and CD44E trans- 
fectants which express similar levels of CD44 and monitor 
the induction of endogenous CD44 transcripts, the expres- 
sion of which has been shown to be stimulated in some cell 
types by the agents used to facilitate transient transfection 
(50). Anti-CD44 mAb binding assays were used to identify 
melanoma transfectants expressing approximately equal 
levels of CD44H and CD44E (Fig. 1, B and C). To ensure 
that the transfection procedure did not result in the ex- 
pression of additional CD44 isoforms, we analyzed mRNA 
isolated from the melanoma transfectants and the parent 
cell line by reverse transcription-polymerase chain reaction 
(RT-PCR). As shown in Fig. 2 by RT-PCR with RNA iso- 
lated from stable transfected melanoma cells encoding ei- 
ther CD44H, CD44E or melanoma cells transfected with 
vector only, express the expected CD44 transcript. The 
RT-PCR products run at the predicted size on the ethid- 
ium stained gel (Fig. 2 A), a random primed 32p-CD44 
probe did not detect any other mRNAs (Fig. 2 B), and a 
probe specific to exon V10 only detects the CD44E iso- 
forms (Fig. 2 C). 

Binding assays with the melanoma ceils expressing 
CD44H and CD44E and the parent cell line showed that 
both transfectants were able to adhere to HA-coated plas- 
tic more effectively than the parent cell line, however, 
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Figure 1. Line drawings representing flow cytometry profiles of 
stable transfected melanoma cells expressing different CD44 iso- 
forms. (A-D) The cells were stained with either an isotype- 
matched control (shaded profile) or a mAb to the "constant" region 
of CD44. (A) MC is the parent cell line which does not express 
CD44. (B) MC44H, (C) MC44E, (D) and MC44E-Trunc, express 
CD44H, CD44E, and a CD44E deletion mutant missing exons 
El5 and El6, respectively. 

the CD44H transfectants bound more efficiently than the 
CD44E transfectants (Fig. 3 A). The binding of both the 
CD44H and CD44E transfectants to the HA-coated plastic 
could be reduced to background levels by the anti-CD44 
mAb indicating that the enhanced binding observed with 
the transfectants was due to the presence of CD44 (Fig. 3). 
These results are consistent with the data obtained with 
the Namalwa and Jurkat transfectants and shows that the 
different binding capacities of CD44H and CD44E can oc- 
cur in both lymphoid and nonlymphoid cell types. 

Receptor Shedding Does Not Account for the 
Difference in the HA-binding Capacity of Melanoma 
Cell Transfectants Expressing CD44H or CD44E 

To examine the role that receptor shedding might play in 
the observed difference in HA binding between CD44H 
and CD44E transfected melanoma cells, we prepared mel- 
anoma transfectants expressing a truncated CD44E pro- 
tein, CD44E-trunc. CD44E-trunc is lacking exons E15 and 
El6 which compose the membrane proximal extracellular 
domain. As reported by Bartolazzi et al. (4), CD44E- 
trunc, unlike CD44E and CD44H, is not shed from the 
transfected melanoma cells after HA binding. Melanoma 
transfectants expressing similar levels of CD44E-trunc to 
those of the CD44H and CD44E transfectants were se- 
lected for HA-binding studies (Fig. 1). RT-PCR analysis 
showed that the only CD44 transcripts expressed by these 
transfectants encoded CD44E-trunc (Fig. 2). HA-binding 
studies with melanoma cells expressing CD44-trunc showed 
that these cells adhere to plastic more efficiently than cells 
transfected with CD44E, however, they did not adhere to 
the HA-coated plastic as effectively as transfectants ex- 
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Figure 3. HA binding of melanoma cells transfected with CD44. 
A 51Cr release assay was used to assess the binding to HA of sta- 
ble MC transfected cells with CD44. MC, MC44H, MC44E, 
MC44E-trunc were radiolabeled with 51Cr, and then seeded onto 
a plate with 5 mg/ml HA at 4°C for 30 min. Nonadherent cells 
were washed away, the remaining cells lysed, and the released 
51Cr was determined. Each data point represents triplicate wells 
and standard deviations are indicated. The binding of the cells to 
HA was blocked by preincubating the cells with an anti-CD44 
mAb (Bric235) at 10 Ixg/ml for 30 min at 4°C. 

Figure 2. RT-PCR of the CD44-transfected melanoma cells. RT- 
PCR D N A  products were generated with primers that span the 
alternatively spliced exons E3-E17, and with one oligonucleotide 
within the variably spliced exon, E13, expressed in CD44E, and 
with primers to Actin. The RT-PCR products were run on a 2% 
agarose gel and detected by (A) ethidium bromide, and then 
transferred onto a Hybond Nylon membrane and probed with a 
(B) 32p-random primed probe to CD44E and (C) with a 32p-end- 
labeled oligonucleotide to exon V10 which is expressed in 
CD44E but not CD44H. 

pressing CD44H (Fig. 3). As with the other CD44 trans- 
fectants the adhesion of the CD44E-trunc transfectants to 
the HA-coated  plastic could be prevented by pretreating 
the cells with a blocking anti-CD44 m A b  (Fig. 3). These 

results suggest that the difference in the lectin capacity of 
the melanoma transfectants expressing CD44H or CD44E 
cannot be accounted for solely on the basis of CD44E 
shedding after ligand-mediated receptor cross-linking, but 
suggest instead a direct contribution by the alternatively 
spliced domain. 

Reduced HA Binding by CD44E Is Specifically 
Mediated by the Inclusion of Variably Spliced Exons 

We have previously reported the use of soluble immuno- 
globulin fusion proteins, containing the extracellular do- 
main of CD44 (CD44-Rg), to study CD44-HA binding 
(44). CD44H-Rg,  CD44E-Rg, and CD44-41R/A-Rg, a 
CD44H point mutant  that lacks HA-binding activity (44) 
were used for this and the previous study (Fig. 4). For  
this study we used the modified chimeric gene encoding 
CD44V10-Rg which includes a pair of unique restriction 
sites between the sequences encoding the "common" CD44 
exons and the human IgG (Fig. 4) (6, 22). These unique re- 
striction sites allow for the convenient subcloning of one 
or more D N A  fragments encoding variably spliced CD44 
exons. Subcloning of the variably spliced exons (V9, 
V8V9) into the cassette results in either loss of amino ac- 
ids from the common exon E5 and the loss of both com- 
mon exons E15 and E16. To control for the loss of these 
sequences, a construct with both regions deleted was made 
and is referred to as CD44HA-Rg (Fig. 4). To examine the 
specificity and the role of O-linked carbohydrates of the 
CD44 alternatively spliced exons in decreasing the lectin 
activity of CD44, the fourth Ig domain of ICAM-1 and the 
mucin domain of CD34 were inserted into the cassette. 

Comparison of the lectin activity of CD44H-Rg, CD44E- 
Rg, and CD44-41R/A-Rg (44), showed that CD44H-Rg 
bound H A  in a concentrat ion-dependent manner, whereas 
CD44E and CD44R/A-Rg have a greatly diminished HA-  
binding activity (Fig. 5 A). Antibody blocking studies 
showed that the binding of the CD44HA-Rg to HA-coated  
plastic could be specifically inhibited by a blocking anti- 
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Figure 4. Line drawings of CD44-Rg con- 
structs used to make soluble immunoglob- 
ulin fusion proteins. CD44H-Rg contains 
only the constant exons encoding the ex- 
tracellular domain, and CD44E-Rg en- 
codes for the constant exons plus three al- 
ternatively spliced exons V8, V9, and V10. 
CD44V10-Rg was engineered to contain a 
BgllI and SphI site (6, 22) which were sub- 
sequently used to clone individual CD44 
variable exons, ICAM-1, and CD34 do- 
mains. 

CD44 mAb indicating that the lectin function of the CD44- 
Rgs is mediated by the CD44 moiety (Fig. 5 B). These ex- 
periments establish that HA-binding studies with CD44-Rgs 
can be used to study the effect of including variably spliced 
CD44 extracellular domains on CD44 lectin function. 

The effect of including variably spliced exons V9 and 
V10, alone or the combination of V8 and V9, on CD44-HA 
binding was examined. Fig. 6 demonstrates that CD44HA- 
Rg has lectin-binding characteristics which are indistinguish- 
able from those of the CD44H-Rg, and its binding to H A  
can be inhibited by a blocking anti-CD44 mAb (Fig. 5 B). 
The effect of including the variably spliced exons V9 or 
V10 individually on CD44 binding to H A  was analyzed by 
testing the ability of the CD44V9-Rg and CD44V10-Rg fu- 
sion proteins to bind to plastic-immobilized HA. HA-bind- 
ing studies with CD44V9-Rg and CD44V10-Rg showed 
that inclusion of variably spliced exons V9 or V10 signifi- 
cantly reduces the ability of CD44HA-Rg to bind HA, with 
exon V10 having a more pronounced effect than exon V9 
(Fig. 6). Exon V10 has over twice the number of amino ac- 
ids as exon V9, and since inclusion of either V9 or V10 did 
not reduce H A  binding to the levels seen with CD44E-Rg 
suggesting that the effect of the variably spliced exons on 
CD44-HA binding is additive. To investigate this possibil- 
ity we prepared a soluble CD44 fusion protein containing 
V8 and V9 (CD44V8, V9-Rg) and examined its lectin 
function. As shown in Fig. 6, CD44V8,V9-Rg binding to 
H A  was intermediate to that seen with CD44HA-Rg or 
CD44E-Rg but lower than that seen with CD44V9-Rg in- 
dicating that the downregulation of CD44-HA-binding in- 
teraction by the inclusion of the variably spliced exons is 
additive. 

To determine if the ability of the variably spliced CD44 
extracellular domain exons to downregulate CD44 lectin 
function is specific or simply a spacing effect, we prepared 
a soluble CD44 fusion protein in which the cDNA frag- 

ment encoding the variably spliced CD44 exons present in 
CD44E-Rg were replaced with a cDNA fragment encod- 
ing the fourth Ig-like domain of human ICAM-1 (Fig. 4). 
The fusion protein encoded by this chimeric gene, CD44/ 
ICAM-1-Rg, bound to H A  (Fig. 7 A) and its binding to 
H A  could be blocked with an anti-CD44 mAb (Fig. 7 B). 
As an additional control we analyzed the ability of ICAM- 
Rg, a fusion between the extracellular domain of ICAM-1 
and human immunoglobulin to bind H A  (Fig. 7 A). Re- 
cently ICAM-1 has been purified from whole rat liver on 
an H A  affinity column (39) but the extracellular domain 
has not been analyzed for H A  binding. We found that 
ICAM-1-Rg did not bind plastic-immobilized H A  in this 
assay, and previously we have shown that ICAM-1-Rg can 
provide costimulatory signals to CD4 ÷ cells through inter- 
actions with LFA-1 (10). These results suggest that the 
down modulation of H A  binding observed with CD44E is 
specifically dictated by the variably spliced CD44 exons 
and is not due to a spacing effect. 

O-linked Carbohydrate Chains on the Variably Spliced 
Exons of CD44E Inhibit the Lectin Function 

The most striking feature shared by the amino acid se- 
quence of the variably spliced exons found in CD44E is 
the presence of multiple Ser and Thr residues which are 
potential sites of O-linked glycosylation, raising the possi- 
bility that O-linked carbohydrates may interfere with 
CD44-HA binding. Initial attempts to address the role of 
O-linked carbohydrate modifications on CD44-HA bind- 
ing relied on the use of enzyme digestion to remove these 
moieties. Although these experiments seemed to indi- 
cate that O-linked carbohydrates play a role in regulating 
CD44-HA interactions, the results were variable (data not 
shown). We attributed this variability to incomplete diges- 
tion and designed alternative methods to investigate the 
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Figure 5. Binding of CD44 fusion proteins to immobilized HA 
was assessed by ELISA. (A) Increasing amounts of CD44 fusion 
proteins were incubated on ELISA plates with 5 Fzg/ml immobi- 
lized HA. Each data point represents the average and standard 
deviation of triplicate wells. (B) Specific blocking of 2 ixg/ml of 
CD44HA-Rg to 5 ~g/ml immobilized HA in the presence of in- 
creasing amounts a anti-CD44 mAb but not an isotype-matched 
control IgG1. 
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Figure 6. HA binding of CD44 fusion proteins with variably 
spliced exons. CD44H and CD44HA-Rg have very similar HA- 
binding profiles. CD44E-Rg has a very low binding capacity to 
HA at the concentration tested. The CD44 fusion proteins with 
the variable spliced exons V9, V10, and V8 plus V9 have an inter- 
mediate HA-binding capacity. 

role of O-linked carbohydrate side chains on CD44-HA 
interaction. Two approaches were used, first, we prepared 
CD44E-Rg in the presence of a specific inhibitor of O-linked 
glycosylation and examined its ability to bind HA. Second, 
we replaced the variably spliced exons in CD44E with a 
Ser and Thr rich sequence from the mucin CD34, which is 
decorated with O-linked carbohydrate moieties, and ex- 
amined the ability of this novel fusion protein (CD44/ 
CD34-Rg) to bind to HA. 

CD44E-Rg and CD44H-Rg were produced in COS cells 
in the presence of phenyl-tx-GalNAc, a compound which 
has been shown to block the addition of O-linked carbohy- 
drates to mucins without affecting cell growth, protein syn- 
thesis, N-linked glycosylation, or G A G  synthesis ([29] 
and Wang, W.-C., personal communication). CD44H-Rg, 
CD44H-Rg O-glyc (-), CD44E-Rg, and CD44E-Rg O-glyc (-) 
made in the presence of phenyl-~x-GalNAc were analyzed 
by running 2 Ixg of the proteins on SDS-PAGE. CD44H- 
Rg runs as a slightly lower molecular weight protein when 
made in the presence of phenyl-cx-galNAc demonstrating 
the loss of O-linked carbohydrates (Fig. 8 A). CD44E-Rg 
is extensively modified by N-linked carbohydrates, O-linked 
carbohydrates, and glycosaminoglycans (8), and conse- 
quently runs as a diffuse band on SDS-PAGE when made 
in the presence or absence of phenyl-et-galNAc resulting 
in no strong detectable shift in molecular weight (Fig. 8 
A). To ensure a reduction in O-linked glycosylation oc- 
curred during the production of CD44E-Rg, a lectin-blot 
was carried out. 100 ng of the proteins were separated on 
SDS-PAGE, transferred to nitrocellulose, and then blot- 
ted with MAA, a lectin that detects (2-3)-linked sialic acids 
in O-glycans (data not shown). The lectin-blot demon- 
strated that in the presence of the inhibitor that CD44E- 
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Figure Z The HA-binding capacity of CD44 is not reduced by 
exon spacing. (A) The Ig domain from ICAM-1 (CD44/ICAM-1- 
Rg) did not reduce the HA-binding capacity of CD44. ICAM-1- 
Rg fusion protein does not bind to immobilized HA. (B) The 
binding of the CD44/ICAM-1-Rg chimeric protein (2 t~g/ml) to 
HA was blocked in a concentration-dependent manner by an 
et-CD44 mAb but not by an isotype-matched control. 

Rg O-glyc (-) contains substantially less O-linked carbohy- 
drates. Binding studies with CD44E-Rg produced in the 
presence of phenyl-et-GalNac showed that this protein 
bound to plastic-immobilized H A  as well as CD44H-Rg 

(Fig. 8 B), while the presence of O-linked glycosylation 
did not influence the binding of CD44H-Rg to H A  (Fig. 8 
C). The ability of the deglycosylated CD44E-Rg to bind to 
H A  was inhibited by a blocking anti-CD44 mAb showing 
that removal of the O-linked sugars unmasked the HA- 
binding site in CD44E (Fig. 8 D). These results suggest 
that O-linked carbohydrates play an important role in 
modulating the ability of CD44E to function as a lectin. 

To independently examine the role of O-linked carbo- 
hydrates in the regulation of CD44-HA binding we pre- 
pared CD44/CD34-Rg (Fig. 4). The chimeric gene encod- 
ing this protein was prepared by replacing the DNA 
sequence encoding the variably spliced exons in CD44E- 
Rg with a DNA fragment encoding the mucin domain of 
CD34. This region of the protein contains 44% Ser/Thr 
residues and is known to be decorated with a large number 
of O-linked carbohydrate moieties. As shown in Fig. 9, in- 
clusion of the CD34 mucin domain substantially reduced 
the ability of CD44H to bind to H A  with the CD44/CD34- 
Rg fusion protein showing HA-binding properties which 
are comparable to those seen with CD44E-Rg. These re- 
suits provide independent evidence that the O-linked car- 
bohydrate moieties, which are added to the variably spliced 
exons found in CD44E, play a role in regulating the ability 
of this protein to function as a lectin. 

To test the role of the O-linked glycosylation in vivo, the 
stable melanoma-transfected cell lines were grown in 2 
mM phenyl-et-GalNAc, and then assayed for H A  binding 
(Fig. 10). A dramatic increase in H A  binding of the mela- 
noma transfectants expressing CD44E occurred while a 
slight increase in HA binding was observed with the CD44H 
transfectants. These data further support that alternatively 
splicing of CD44 provides a mechanism of regulating the 
lectin function by the addition of mucin-like domains. 

Discussion 

Using melanoma cell transfectants expressing either CD44H 
or CD44E, we show that although both forms of CD44 are 
capable of binding HA, CD44H-Rg binds H A  significantly 
better than CD44E-Rg. This difference was also seen 
when the HA-binding activity of CD44H and CD44E, sol- 
uble immunoglobulin fusion proteins, was examined in a 
cell-free system using H A  immobilized on plastic where 
CD44H binds H A  at concentrations well below those re- 
quired to detect CD44E interacting with HA. Experi- 
ments with CD44V9-Rg, CD44V10-Rg, CD44V8, V9-Rg, 
and CD44/ICAM-1-Rg showed that including the variably 
spliced exons found in CD44E, but not an ICAM-1 derived 
Ig domain, specifically inhibited CD44 lectin function. In 
addition, the effect of each exon was additive, suggesting 
that the level of H A  binding retained by a given CD44 iso- 
form can be finely regulated by varying the number of al- 
ternatively spliced exons present in that CD44 isoform. 

Inspection of the amino acid sequence of variably spliced 
CD44 domains found in CD44E showed that they are rich 
in Ser and Thr residues and thus likely to be highly modi- 
fied with O-linked carbohydrates in some cell types (Ser/ 
Thr content in exons V8-V10 varies from 43% for exon V9 
to 30% for exon V10). This led us to speculate that carbo- 
hydrate modifications of the variably spliced CD44 exons 
may play a role in regulating the HA-binding activity of 
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Figure 8. Production of CD44E-Rg in the presence of an O-linked glycosylation inhibitor generated a fusion protein with high capacity 
binding to HA. (A) A comparison of the molecular weights by SDS-PAGE of CD44H-Rg and CD44E-Rg made in the presence of 
(O-Glyc (-)) and absence of phenyl-ct-galNAc. (B) Increasing concentrations of CD44E-Rg produced in the presence of phenyl-ct-Gal- 
NAc bound to HA. (C) Increasing concentrations of CD44H-Rg produced in the presence and absence of phenyl-a-GalNAc bound HA 
equivalently. (D) The binding to HA by CD44E-Rg (2 Ixg/ml) was blocked by an ~x-CD44 mAb but not by an isotype-matched control. 

CD44. Indeed, such mechanisms have been observed to 
regulate the interaction between ICAM-1 and Mac-1 (11) 
and was proposed by Hodes and his colleagues to play a 
role in regulating CD44-HA binding (18). We investigated 
this possibility by digesting CD44E-Rg with a number of 
glycosidases and examining its ability to bind HA. These 
experiments were variable but suggested a role for O-linked 
glycosylation in the modulation of the HA-binding activity 
of CD44E. We attributed these variable results to the in- 
ability of the enzymes to completely remove the carbohy- 

drates from the native protein. We circumvented this 
problem by producing CD44E-Rg in the presence of an in- 
hibitor of O-linked carbohydrate addition. Binding studies 
with CD44E-Rg lacking O-linked carbohydrates showed 
that it was able to bind H A  as efficiently as CD44H-Rg. 
This was in contrast to CD44H-Rg, where the O-linked 
carbohydrates had no effect on CD44-Rg/HA interaction. 
Furthermore, antibody blocking experiments demonstrated 
that the binding of the deglycosylated protein was specifi- 
cally mediated by the CD44 HA-binding site. If O-linked 
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Figure 9. A mucin domain from CD34 reduced the HA-binding 
capacity of CD44. A CD44/CD34-Rg chimeric protein bound only 
weakly to immobilized HA. 

carbohydrates play such an important role in modulating 
the lectin activity of CD44, we reasoned that it should be 
possible to mimic the effects of the variably spliced exons 
found in CD44E by including carboxyl-terminal to the 
HA-binding domain of CD44, a polypeptide fragment from 
a mucin which is heavily substituted with O-linked carbo- 
hydrates. For this reason we prepared CD44/CD34-Rg, a 
CD44 immunoglobulin fusion protein in which sequences 
corresponding to the variably spliced exons found in CD44E 
were replaced by a Ser/Thr rich polypeptide fragment de- 
rived from CD34 (Ser/Thr content in this region is 44%). 
Binding studies with CD44/CD34-Rg showed that the in- 
clusion of this mucin fragment significantly inhibited the 
ability of CD44H to bind HA. Furthermore, the trans- 
fected melanoma cells expressing CD44E and CD44H 
bound equivalently H A  when grown in the presence of 
2 mM phenyl-tx-GalNAc in a CD44-dependent manner. 
Taken together these results provide significant evidence 
that O-linked carbohydrate moieties added to the variably 
spliced exons of CD44 play a role in modulating the lectin 
activity of CD44. While O-linked glycosylation introduced 
by the variable spliced exons of CD44 modulate HA bind- 
ing, other factors may also be invoNed in regulating CD44 
isoform function. For example, two recent papers have 
shown that N-linked glycosylation reduces the ability of 
CD44 to bind HA (26, 31). 

Although this study focused on the regulation of CD44- 
H A  binding mediated by variably spliced exons V8-V10, 
inspection of the amino acid sequence of other extracellu- 
lar domain variably spliced exons (V2-V7) showed that 
they are also rich in Ser and Thr residues (Ser/Thr content 
varies from 18% for exon V5 to 32% for exon V2) suggest- 
ing that the glycosylation of these exons might also play a 
role in modulating the lectin activity of the CD44 common 

Figure 10. HA binding of melanoma transfectants grown in the 
presence of phenyl-a-GalNAc. A 5~Cr release assay was used to 
assess the binding to HA of the MC- transfected cells. Binding of 
MC44E cells to HA increased to a level equivalent to that of the 
MC44H cells when grown in the presence of an O-linked glycosy- 
lation inhibitor. All experiments were performed in sextuplicate. 

exons in CD44 isoforms which contain them. The function 
of two other lectins have been reported to be regulated by 
glycosylation. Removal of sialic acid from the asialoglyco- 
protein receptor results in the exposure of galactose moi- 
eties which bind to the receptor blocking the binding activ- 
ity of receptor preparations (3). Similarly, modification of 
CD22 with a 2,6-sialic acids blocks the ability of soluble re- 
ceptor preparations to bind to lymphocytes, presumably 
due to CD22-CD22 interactions involving sialic acid (7). 
These results indicate that receptor glycosylation might be 
a common mechanism for regulating the function of a sub- 
set of lectins. The regulation of CD44-HA binding by gly- 
cosylation differs from that reported for the asialoglyco- 
protein receptor and CD22 in two important ways. First, in 
CD44 there are two levels at which glycosylation can be 
regulated; one is at the level of alternative splicing, the 
other is at the level of expression of the glycosyltrans- 
ferases. Second, alternative splicing has the potential to 
give rise to CD44 isoforms with graded HA-binding capac- 
ities. These two mechanisms allow for the tight regulation 
of the HA-binding activity of CD44 isoforms containing 
variably spliced exons by glycosylation and suggest that a 
cell can rapidly regulate CD44/HA interaction by post- 
translational modification and/or alternative splicing. 

The molecular mechanism whereby carbohydrate modi- 
fication of the alternatively spliced CD44 exons modulates 
the binding activity of this protein remains to be deter- 
mined. It is possible that glycosylation might alter the con- 
formation of the molecule affecting its ability to function as 
a lectin. Alternatively, the negative charges on the O-linked 
carbohydrate chains might perturb and/or directly inter- 
fere with the two clusters of positively charged residues 
which form the HA-binding site located at the NH2 termi- 
nus of all CD44 isoforms (55). 

Experiments designed to address the role of alternative 
splicing in the regulation of CD44-HA binding have been 
carried out and yielded mixed results. CD44-negative B 
cell lines transfected with human CD44H but not CD44E 
or CD44 isoforms with additional alternatively spliced ex- 
ons, were able to bind to hyaluronan-bearing cells (51). 
Likewise, CD44-negative T cells transfected with CD44H 
and CD44E showed different HA-binding activities after 
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activation (22, 38). CD44H binding to HA was inducible 
by PMA and a number of anti-CD44 antibodies, whereas, 
CD44E inducible HA binding was much more restricted. 
In addition, the CD44E transfectants induced HA binding 
at lower levels than that observed with the CD44H trans- 
fectants. Taken together these two reports suggest that al- 
though these two CD44 isoforms can bind HA, CD44H 
binds HA more effectively than CD44E. Furthermore, this 
work supports the notion that there are multiple mecha- 
nisms functioning to regulate HA binding by CD44. First, 
there appears to be an on/off switch that can regulate both 
isoforms, and second, the addition of alternatively spliced 
exons along with regulation of the level of glycosylation 
can result in the ability of fine tuning CD44/HA-binding 
interactions. These observations contrast with the results 
by Dougherty et al. (12) and in experiments showing that 
CD44-negative T cells transfected with murine CD44H or 
CD44E bound HA comparably (19). The results presented 
herein suggest that the reported differences in the ability 
of a given CD44 isoform to bind to HA when expressed in 
different cell types may arise from differences in the ability 
of the cells to appropriately and/or sufficiently modify CD44 
isoforms containing variably spliced exons with O-linked 
carbohydrates. 

The ability of CD44H to bind HA in a number of cell 
types is regulated. Cellular activation (14, 37), protein syn- 
thesis (42), and cytoplasmic domain phosphorylation (45) 
have been implicated in the regulation of the interaction 
of CD44H with HA. The finding that the interaction of 
CD44E with HA is regulated by the addition of O-linked 
carbohydrate moieties to the variably spliced exons adds 
an additional mechanism to the regulation of CD44-HA 
binding and suggests that in vivo the lectin activity of all 
CD44 isoforms is tightly regulated. Presently, it is not clear 
why it is physiologically important to regulate the HA- 
binding activity of this receptor, however, its widespread 
distribution and unique role in cell activation, adhesion, 
and migration suggests that its function as an HA-binding 
lectin requires precise regulation in vivo. 
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