37 research outputs found

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Get PDF
    BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism

    Fetal and neonatal alloimmune thrombocytopenia: Current pathophysiological insights and perspectives for future diagnostics and treatment

    No full text
    FNAIT is a pregnancy-associated condition caused by maternal alloantibodies against paternally-inherited platelet antigens, most frequently HPA-1a on integrin ß3. The clinical effects range from no symptoms to fatal intracranial hemorrhage, but underlying pathophysiological determinants are poorly understood. Accumulating evidence suggests that differential antibody-Fc-glycosylation, activation of complement/effector cells, and integrin function-blocking effects contribute to clinical outcome. Furthermore, some antibodies preferentially bind platelet integrin ¿IIbß3, but others bind ¿vß3 on endothelial cells and trophoblasts. Defects in endothelial cells and angiogenesis may therefore contribute to severe anti-HPA-1a associated FNAIT. Moreover, anti-HPA-1a antibodies may cause placental damage, leading to intrauterine growth restriction. We discuss current insights into diversity and actions of HPA-1a antibodies, gathered from clinical studies, in vitro studies, and mouse models. Assessment of all factors determining severity and progression of anti-HPA-1a-associated FNAIT may importantly improve risk stratification and potentially reveal novel treatment strategies, both for FNAIT and other immunohematological disorders.The authors gratefully acknowledge financial support from Sanquin (PPOD grant # 17-29) and the Landsteiner Foundation for Blood Transfusion Research (LSBR; grant # 2019)

    Long Non-coding RNAs Rian and Miat Mediate Myofibroblast Formation in Kidney Fibrosis

    No full text
    There is an increasing prevalence of chronic kidney disease (CKD), which associates with the development of interstitial fibrosis. Pericytes (perivascular fibroblasts) provide a major source of α-SMA-positive myofibroblasts that are responsible for the excessive deposition of extracellular matrix. In order to identify pericyte long non-coding RNAs (lncRNAs) that could serve as a target to decrease myofibroblast formation and counteract the progression of kidney fibrosis we employed two models of experimental kidney injury, one focused on kidney fibrosis (unilateral ureteral obstruction; UUO), and one focused on acute kidney injury that yields kidney fibrosis in the longer term (unilateral ischemia-reperfusion injury; IRI). This was performed in FoxD1-GC;tdTomato stromal cell reporter mice that allowed pericyte fate tracing. Tomato red-positive FoxD1-derivative cells of control and injured kidneys were FACS-sorted and used for lncRNA and mRNA profiling yielding a distinctive transcriptional signature of pericytes and myofibroblasts with 244 and 586 differentially expressed lncRNAs (>twofold, P < 0.05), in the UUO and IRI models, respectively. Next, we selected two differentially expressed and conserved lncRNAs, Rian (RNA imprinted and accumulated in nucleus) and Miat (Myocardial infarction associated transcript), and explored their potential regulatory role in myofibroblast formation through knockdown of their function with gapmers. While Miat was upregulated in myofibroblasts of UUO and IRI in mice, gapmer silencing of Miat attenuated myofibroblast formation as evidenced by decreased expression of α-SMA, col1α1, SMAD2, and SMAD3, as well as decreased α-SMA and pro-collagen-1α1 protein levels. In contrast, silencing Rian, which was found to be downregulated in kidney myofibroblast after IRI and UUO, resulted in increased myofibroblast formation. In addition, we found microRNAs that were previously linked to Miat (miR-150) and Rian (14q32 miRNA cluster), to be dysregulated in the FoxD1-derivative cells, suggesting a possible interaction between miRNAs and these lncRNAs in myofibroblast formation. Taken together, lncRNAs play a regulatory role in myofibroblast formation, possibly through interacting with miRNA regulation, implicating that understanding their biology and their modulation may have the potential to counteract the development of renal fibrosis

    Financial Conditions in the Farm Sector

    No full text
    The agricultural economy is not expected to experience demand related price strength until later this Year. Recovery of the world economy offers little immediate hape for expanded U.S. agricultural eliports. Farm commodity programs have improved sagging farm prices and the acreage reduction and PIK programs for the 1983/84 crop year will reduce farm Production expenditures and credit -- needs. Farmland values continued to decline during the fourth quarter of 1982,- . but the rates of decline in many areas were less than those experienced earlier. Interest rates have declined since the middle of 1962, but they remain high in real termp. A relatively large percentage of the customers of farm lenders _will continue to have serious cash flow problems. Host lenders believe credit problems will continue through 1983. Funds are available to credit-worthy farm borrowers and most lenders are exercising forebearance with customers experiencing cash flow difficulties
    corecore