41 research outputs found
Polysaccharide antigen-glycolipid conjugate vaccines
The present invention relates to the field of synthesizing and biologically evaluating of a novel class of carbohydratebased vaccines. The new vaccines consist of a multi- modular structure which allows applying the vaccine to a whole variety of pathogenes. This method allows preparing vaccines against all pathogens expressing immunogenic carbohydrate antigens. As conjugation of antigenic carbohydrates to proteins is not required the conjugate vaccine is particularly heat stable. No refrigeration is required, a major drawback of protein-based vaccines
Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice
Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice
Total synthesis of legionaminic acid as basis for serological studies
Legionaminic acid is a nine-carbon diamino monosaccharide that is found coating the surface of various bacterial human pathogens. Its unique structure makes it a valuable biological probe, but access via isolation is difficult and no practical synthesis has been reported. We describe a stereoselective synthesis that yields a legionaminic acid building block as well as linker-equipped conjugation-ready legionaminic acid starting from cheap d-threonine. To set the desired amino and hydroxyl group pattern of the target, we designed a concise sequence of stereoselective reactions. The key transformations rely on chelation-controlled organometallic additions and a Petasis multicomponent reaction. The legionaminic acid was synthesized in a form that enables attachment to surfaces. Glycan microarray containing legionaminic acid revealed that human antibodies bind the synthetic glycoside. The synthetic bacterial monosaccharide is a valuable probe to detect an immune response to bacterial pathogens such as Legionella pneumophila, the causative agent of Legionnaire’s disease
Carbohydrate-glycolipid conjugate vaccines
The present invention relates to the field of synthesizing and biologically evaluating of a novel class of carbohydrate-based vaccines. The new vaccines consist of a multi-modular structure wherein a carbohydrate antigen is covalently bound to a glycolipid adjuvant. This method allows preparing vaccines against all pathogens expressing immunogenic carbohydrate antigens. As conjugation of antigenic carbohydrates to proteins is not required the conjugate vaccine is particularly heat stable. No refrigeration is required, a major drawback of protein-based vaccines