268 research outputs found
Recommended from our members
A humanized monoclonal antibody that inhibits platelet-surface ERp72 reveals a role for ERp72 in thrombosis
Background: Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulphide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface including PDI, ERp5 and ERp57 and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis.
Aim: We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation, however its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis.
Methods: Using HuCAL technology, fully humanised Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays.
Results and conclusions: Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis
Recommended from our members
Ibrutinib inhibits platelet integrin αIIbβ3 outside-in signaling and thrombus stability but not adhesion to collagen
OBJECTIVE:
Ibrutinib is an irreversible Bruton tyrosine kinase inhibitor approved for treatment of Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma that increases the risk of bleeding among patients. Platelets from ibrutinib-treated patients exhibit deficiencies in collagen-evoked signaling in suspension; however, the significance of this observation and how it relates to bleeding risk is unclear, as platelets encounter immobile collagen in vivo. We sought to clarify the effects of ibrutinib on platelet function to better understand the mechanism underlying bleeding risk.
APPROACH AND RESULTS:
By comparing signaling in suspension and during adhesion to immobilized ligands, we found that the collagen signaling deficiency caused by ibrutinib is milder during adhesion to immobilized collagen. We also found that platelets in whole blood treated with ibrutinib adhered to collagen under arterial shear but formed unstable thrombi, suggesting that the collagen signaling deficiency caused by ibrutinib may not be the predominant cause of bleeding in vivo. However, clot retraction and signaling evoked by platelet adhesion to immobilized fibrinogen were also inhibited by ibrutinib, indicating that integrin αIIbβ3 outside-in signaling is also effected in addition to GPVI signaling. When ibrutinib was combined with the P2Y12 inhibitor, cangrelor, thrombus formation under arterial shear was inhibited additively.
CONCLUSIONS:
These findings suggest that (1) ibrutinib causes GPVI and integrin αIIbβ3 platelet signaling deficiencies that result in formation of unstable thrombi and may contribute toward bleeding observed in vivo and (2) combining ibrutinib with P2Y12 antagonists, which also inhibit thrombus stability, may have a detrimental effect on hemostasis
Recommended from our members
The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects
Quercetin, a dietary flavonoid, has been reported to possess antiplatelet activity. However, its extensive metabolism following ingestion has resulted in difficulty elucidating precise mechanisms of action. In this study, we aimed to characterize the antiplatelet mechanisms of two methylated metabolites of quercetin—isorhamnetin and tamarixetin—and explore potential interactions with aspirin. Isorhamnetin and tamarixetin inhibited human platelet aggregation, and suppressed activatory processes including granule secretion, integrin αIIbβ3 function, calcium mobilization, and spleen tyrosine kinase (Syk)/linker for activation of T cells (LAT) phosphorylation downstream of glycoprotein VI with similar potency to quercetin. All three flavonoids attenuated thrombus formation in an in vitro microfluidic model, and isoquercetin, a 3-O-glucoside of quercetin, inhibited thrombosis in a murine laser injury model. Isorhamnetin, tamarixetin, and quercetin enhanced the antiplatelet effects of aspirin more-than-additively in a plate-based aggregometry assay, reducing aspirin IC50 values by an order of magnitude, with this synergy maintained in a whole blood test of platelet function. Our data provide mechanistic evidence for the antiplatelet activity of two quercetin metabolites, isorhamnetin and tamarixetin, and suggest a potential antithrombotic role for these flavonoids. In combination with their interactions with aspirin, this may represent a novel avenue of investigation for the development of new antithrombotic strategies and management of current therapies
Commissioning and Field Tests of a Van-Mounted System for the Detection of Radioactive Sources and Special Nuclear Material
MODES-SNM project aimed at developing a mobile/portable modular detection system for radioactive sources and Special Nuclear Material (SNM). Its main goal was to deliver a tested prototype capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests are presented in this publication
Interstitial pneumonia with autoimmune features: Why rheumatologist–pulmonologist collaboration is essential
In 2015 the European Respiratory Society (ERS) and the American Thoracic Society (ATS) “Task Force on Undifferentiated Forms of Connective Tissue Disease-associ-ated Interstitial Lung Disease” proposed classification criteria for a new research category defined as “Interstitial Pneumonia with Autoimmune Features” (IPAF), to uniformly de-fine patients with interstitial lung disease (ILD) and features of autoimmunity, without a definite connective tissue disease. These classification criteria were based on a variable combination of features obtained from three domains: a clinical domain consisting of extra-thoracic features, a serologic domain with specific autoantibodies, and a morphologic domain with imaging patterns, histopathological findings, or multicompartment in-volvement. Features suggesting a systemic vasculitis were excluded. Since publication of ERS/ATS IPAF research criteria, various retrospective studies have been published focusing on prevalence; clinical, morphological, and serological features; and prognosis of these patients showing a broad heterogeneity in the results. Recently, two prospective, cohort studies were performed, confirming the existence of some peculiarities for this clinical entity and the possible progression of IPAF to a defined connective tissue disease (CTD) in about 15% of cases. Moreover, a non-specific interstitial pneumonia pattern, an anti-nuclear antibody positivity, and a Raynaud phenomenon were the most common findings. In comparison with idiopathic pulmonary fibrosis (IPF), IPAF patients showed a better performance in pulmonary function tests and less necessity of oxygen delivery. However, at this stage of our knowledge, we believe that further prospective studies, possibly derived from multicenter cohorts and through randomized control trials, to further validate the proposed classification criteria are needed
Differences between acute exacerbations of idiopathic pulmonary fibrosis and other interstitial lung diseases.
Interstitial lung diseases (ILDs) comprise a wide group of pulmonary parenchymal disorders. These patients may experience acute respiratory deteriorations of their respiratory condition, termed “acute exacerbation” (AE). Incidence of AE-ILD seems to be lower than idiopathic pulmonary fibrosis (IPF), but prognosis and prognostic factors are largely unrecognized. We retrospectively analyzed a cohort of 158 consecutive adult patients hospitalized for AE-ILD in two Italian University hospitals from 2009 to 2016. Patients included in the analysis has been divided into two groups: non-IPF (62%) and IPF (38%). Among ILDs included in the non-IPF group, the most frequent diagnoses were non-specific interstitial pneumonia (NSIP) (42%) and connective tissue disease (CTD)-ILD (20%). Mortality during hospitalization was significantly different between the two groups, respectively 19% in non-IPF group and 43% in IPF group. AEs of ILDs are difficult-to-predict events and are burdened by relevant mortality. Increased inflammatory markers with neutrophilia on differential blood cell count (HR 1.02 [CI 1.01 – 1.04]), presence of pulmonary hypertension (HR 1.85 – [CI 1.17 – 2.92]) and diagnosis of IPF (HR 2.31 [CI 1.55 – 3.46]) resulted negative prognostic factors in our analysis, while lymphocytosis on differential count seemed to act as a protective prognostic factor (OR 0.938 [CI 0.884 – 0.995]). Further prospective, large-scale, real-world data are needed to support and confirm the impact of our findings
O Antigen Allows B. parapertussis to Evade B. pertussis Vaccine–Induced Immunity by Blocking Binding and Functions of Cross-Reactive Antibodies
Although the prevalence of Bordetella parapertussis varies dramatically among studies in different populations with different vaccination regimens, there is broad agreement that whooping cough vaccines, composed only of B. pertussis antigens, provide little if any protection against B. parapertussis. In C57BL/6 mice, a B. pertussis whole-cell vaccine (wP) provided modest protection against B. parapertussis, which was dependent on IFN-γ. The wP was much more protective against an isogenic B. parapertussis strain lacking O-antigen than its wild-type counterpart. O-antigen inhibited binding of wP–induced antibodies to B. parapertussis, as well as antibody-mediated opsonophagocytosis in vitro and clearance in vivo. aP–induced antibodies also bound better in vitro to the O-antigen mutant than to wild-type B. parapertussis, but aP failed to confer protection against wild-type or O antigen–deficient B. parapertussis in mice. Interestingly, B. parapertussis–specific antibodies provided in addition to either wP or aP were sufficient to very rapidly reduce B. parapertussis numbers in mouse lungs. This study identifies a mechanism by which one pathogen escapes immunity induced by vaccination against a closely related pathogen and may explain why B. parapertussis prevalence varies substantially between populations with different vaccination strategies
Recommended from our members
Structural, functional and mechanistic insights uncover the fundamental role of orphan connexin-62 in platelets
Connexins (Cxs) oligomerise to form hexameric hemichannels in the plasma membrane that can further dock together on adjacent cells to form gap junctions and facilitate intercellular-trafficking of molecules. In this study, we report the expression and function of an ‘orphan’ connexin, Cx62, in human and mouse (Cx57, mouse homologue) platelets. A novel mimetic peptide (62Gap27) was developed to target the second extracellular loop of Cx62 and 3D structural models predicted its interference with gap junction and hemichannel function. The ability of 62Gap27 to regulate both gap junction and hemichannel-mediated intercellular communication was observed using FRAP analysis and flow cytometry. Cx62 inhibition by 62Gap27 suppressed a range of agonist-stimulated platelet functions and impaired thrombosis and haemostasis. This was associated with elevated PKA-dependent signalling in a cyclic adenosine monophosphate-independent manner, and was not observed in Cx57 deficient mouse platelets (in which the selectivity of 62Gap27 for this connexin was also confirmed). Notably, Cx62 hemichannels were observed to function independently of Cx37 and Cx40 hemichannels. Together, our data reveal a fundamental role for a hitherto uncharacterised connexin in the regulation of the function of circulating cells
Longitudinal assessment of reflexive and volitional saccades in Niemann-Pick Type C disease during treatment with miglustat
- …
