2,864 research outputs found

    Metastable States in High Order Short-Range Spin Glasses

    Full text link
    The mean number of metastable states in higher order short-range spin glasses is estimated analytically using a variational method introduced by Tanaka and Edwards for very large coordination numbers. For lattices with small connectivities, numerical simulations do not show any significant dependence on the relative positions of the interacting spins on the lattice, indicating thus that these systems can be described by a few macroscopic parameters. As an extremely anisotropic model we consider the low autocorrelated binary spin model and we show through numerical simulations that its landscape has an exceptionally large number of local optima

    Error Propagation in the Hypercycle

    Get PDF
    We study analytically the steady-state regime of a network of n error-prone self-replicating templates forming an asymmetric hypercycle and its error tail. We show that the existence of a master template with a higher non-catalyzed self-replicative productivity, a, than the error tail ensures the stability of chains in which m<n-1 templates coexist with the master species. The stability of these chains against the error tail is guaranteed for catalytic coupling strengths (K) of order of a. We find that the hypercycle becomes more stable than the chains only for K of order of a2. Furthermore, we show that the minimal replication accuracy per template needed to maintain the hypercycle, the so-called error threshold, vanishes like sqrt(n/K) for large K and n<=4

    Complex-network analysis of combinatorial spaces: The NK landscape case

    Full text link
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces. We use the well-known family of NK landscapes as an example. In our case the inherent network is the graph whose vertices represent the local maxima in the landscape, and the edges account for the transition probabilities between their corresponding basins of attraction. We exhaustively extracted such networks on representative NK landscape instances, and performed a statistical characterization of their properties. We found that most of these network properties are related to the search difficulty on the underlying NK landscapes with varying values of K.Comment: arXiv admin note: substantial text overlap with arXiv:0810.3492, arXiv:0810.348

    Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Get PDF
    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.Comment: 4 pages, 2 figures; 21st International Conference on Few-Body Problems in Physics, May 18 - 22, 2015, Chicago, US

    Quasi-Independence, Homology and the Unity of Type: A Topological Theory of Characters

    Get PDF
    In this paper Lewontin’s notion of “quasi-independence” of characters is formalized as the assumption that a region of the phenotype space can be represented by a product space of orthogonal factors. In this picture each character corresponds to a factor of a region of the phenotype space. We consider any region of the phenotype space that has a given factorization as a “type”, i.e. as a set of phenotypes that share the same set of phenotypic characters. Using the notion of local factorizations we develop a theory of character identity based on the continuation of common factors among different regions of the phenotype space. We also consider the topological constraints on evolutionary transitions among regions with different regional factorizations, i.e. for the evolution of new types or body plans. It is shown that direct transition between different “types” is only possible if the transitional forms have all the characters that the ancestral and the derived types have and are thus compatible with the factorization of both types. Transitional forms thus have to go over a “complexity hump” where they have more quasi-independent characters than either the ancestral as well as the derived type. The only logical, but biologically unlikely, alternative is a “hopeful monster” that transforms in a single step from the ancestral type to the derived type. Topological considerations also suggest a new factor that may contribute to the evolutionary stability of “types”. It is shown that if the type is decomposable into factors which are vertex irregular (i.e. have states that are more or less preferred in a random walk), the region of phenotypes representing the type contains islands of strongly preferred states. In other words types have a statistical tendency of retaining evolutionary trajectories within their interior and thus add to the evolutionary persistence of types

    Fractal geometry of spin-glass models

    Full text link
    Stability and diversity are two key properties that living entities share with spin glasses, where they are manifested through the breaking of the phase space into many valleys or local minima connected by saddle points. The topology of the phase space can be conveniently condensed into a tree structure, akin to the biological phylogenetic trees, whose tips are the local minima and internal nodes are the lowest-energy saddles connecting those minima. For the infinite-range Ising spin glass with p-spin interactions, we show that the average size-frequency distribution of saddles obeys a power law ∌w−D \sim w^{-D}, where w=w(s) is the number of minima that can be connected through saddle s, and D is the fractal dimension of the phase space

    Aggregation of variables and system decomposition: Applications to fitness landscape analysis

    Get PDF
    In this paper we present general results on aggregation of variables, specifically as it applies to decomposable (partitionable) dynamical systems. We show that a particular class of transition matrices, namely, those satisfying an equitable partitioning property, are aggregable under appropriate decomposition operators. It is also shown that equitable partitions have a natural application to the description of mutation-selection matrices (fitness landscapes) when their fitness functions have certain symmetries concordant with the neighborhood relationships in the underlying configuration space. We propose that the aggregate variable descriptions of mutation-selection systems offer a potential formal definition of units of selection and evolution

    Simon-Ando decomposability and fitness landscapes

    Get PDF
    In this paper, we investigate fitness landscapes (under point mutation and recombination) from the standpoint of whether the induced evolutionary dynamics have a “fast-slow” time scale associated with the differences in relaxation time between local quasi-equilibria and the global equilibrium. This dynamical hevavior has been formally described in the econometrics literature in terms of the spectral properties of the appropriate operator matrices by Simon and Ando (Econometrica 29 (1961) 111), and we use the relations they derive to ask which fitness functions and mutation/recombination operators satisfy these properties. It turns out that quite a wide range of landscapes satisfy the condition (at least trivially) under point mutation given a sufficiently low mutation rate, while the property appears to be difficult to satisfy under genetic recombination. In spite of the fact that Simon-Ando decomposability can be realized over fairly wide range of parameters, it imposes a number of restriction on which landscape partitionings are possible. For these reasons, the Simon-Ando formalism does not appear to be applicable to other forms of decomposition and aggregation of variables that are important in evolutionary systems

    Additional Dimensions to the Study of Funnels in Combinatorial Landscapes

    Get PDF
    The global structure of travelling salesman's fitness landscapes has recently revealed the presence of multiple `funnels'. This implies that local optima are organised into several clusters, so that a particular local optimum largely belongs to a particular funnel. Such a global structure can increase search difficulty, especially, when the global optimum is located in a deep, narrow funnel. Our study brings more precision (and dimensions) to the notion of funnels with a data-driven approach using Local Optima Networks and the Chained Lin-Kernighan heuristic. We start by exploring the funnel 'floors', characterising them using the notion of communities from complex networks. We then analyse the more complex funnel 'basins'. Since their depth is relevant to search, we visualise them in 3D. Our study, across a set of TSP instances, reveals a multi-funnel structure in most of them. However, the specific topology varies across instances and relates to search difficulty. Finally, including a stronger perturbation into Chained Lin-Kernighan proved to smooth the funnel structure, reducing the number of funnels and enlarging the valley leading to global optima
    • 

    corecore