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Abstract. In this paper Lewontin’s notion of “quasi-independence” of characters is formalized
as the assumption that a region of the phenotype space can be represented by a product space
of orthogonal factors. In this picture each character corresponds to a factor of a region of the
phenotype space. We consider any region of the phenotype space that has a given factorization
as a “type”, i.e., as a set of phenotypes that share the same set of phenotypic characters.
Using the notion of local factorizations we develop a theory of character identity based on
the continuity of common factors among different regions of the phenotype space. We also
consider the topological constraints on evolutionary transitions among regions with different
regional factorizations, i.e., for the evolution of new types or body plans. It is shown that
direct transition between different “types” is only possible if the transitional forms have all
the characters that the ancestral and the derived types have and are thus compatible with
the factorization of both types. Transitional forms thus have to go over a “complexity hump”
where they have more quasi-independent characters than either the ancestral as well as the
derived type. The only logical, but biologically unlikely, alternative is a “hopeful monster”
that transforms in a single step from the ancestral type to the derived type. Topological
considerations also suggest a new factor that may contribute to the evolutionary stability of
“types.” It is shown that if the type is decomposable into factors which are vertex irregular
(i.e. have states that are more or less preferred in a random walk), the region of phenotypes
representing the type contains islands of strongly preferred states. In other words types have
a statistical tendency of retaining evolutionary trajectories within their interior and thus add
to the evolutionary persistence of types.
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1. Introduction

Evolutionary change results from the spontaneous generation of genetic variation and
the fixation of variants in the population through natural selection and genetic drift.
This basic assumption of the Neo-Darwinian model implies population genetics as a
natural framework for studying the evolution of phenotypic adaptation, the evolution of
gene sequences, and the process of speciation, see e.g. (Futuyma, 1998; Graur and Li,
2000).

Patterns of phenotypic evolution (Schlichting and Pigliucci, 1998), on the other hand,
such as the punctuated mode (the partially discontinuous nature) of evolutionary change
(Eldredge and Gould, 1972), developmental constraints or constraints to variation (nard
Smith et al., 1985; Schwenk, 1995), innovation (Müller and Wagner, 1991), directional-
ity in evolution, and phenotypic stability or homology are not adequately described by
population genetics models. The reason is that before selection can determine the fate
of a new phenotype, that phenotype must first be produced or “accessed” by means of
variational mechanisms (Fontana and Buss, 1994). Phenotypes are not varied directly
in a heritable fashion, but through genetic mutation and its consequences on develop-
ment. The accessibility of a phenotype is therefore determined by the genotype-phenotype
map which determines how phenotypes vary with genotypes (Lewontin, 1974; Wagner
and Altenberg, 1996; Fontana and Schuster, 1998a). In a previous contributions it has
been demonstrated that many of the recalcitrant phenomena in evolutionary biology,
like punctuated innovation, developmental constraints, homology and irreversibility, can
be understood as statements about the accessibility structure of the phenotype space
(Fontana and Schuster, 1998a; Cupal et al., 2000; Stadler et al., 2001).

The motivation for emphasizing the central role of the genotype-phenotype map arose
from studies in which RNA folding from sequences to secondary structures is used as a
biophysically realistic, yet extremely simplified toy-model of a genotype-phenotype map.
Simulated populations of replicating and mutating sequences under selection exhibit
many phenomena known from organismal evolution: neutral drift, punctuated change,
plasticity, environmental and genetic canalization, and the emergence of modularity, see
e.g. (Fontana et al., 1989; Schuster et al., 1994; Huynen et al., 1996; Fontana and Schus-
ter, 1998a,b; Ancel and Fontana, 2000). Laboratory experiments have also generated
phenomena consistent with these patterns (Spiegelman, 1971; Lenski and Travisano,
1994; Szostak and Ellington, 1993).

The accessibility structure at the genotypic level is defined by the genetic operators
such as mutation, homologous as well as non-homologous cross-over, gene duplication
and gene-loss, and genomic rearrangements. In the simplest case of point-mutations
only, accessibility arranges the sequences as graph. The vertices of this graph are the se-
quences; two sequences are connected by an edge if and only if they differ by a single point
mutation. In the case of recombination a more complicated structure arises (Gitchoff
and Wagner, 1996; Stadler and Stadler, 2002). The genotype-phenotype map translates
genotypic accessibility into accessibility among phenotypes and therefore defines the
structure of phenotype space (Fontana and Schuster, 1998a,b; Cupal et al., 2000). The
important observation, as we shall see in the following, is that this translation is biased
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and hence the source of asymmetries even if mutational mechanisms generate genetic
variation at random. This is caused by the fact that the genotype-phenotype relation is
strongly many-to-one and far from random.

Accessibility is an inherently topological notion. It does not come as a surprise,
therefore, that the mathematical description of the phenotype space proposed by Stadler
et al. (2001) is a generalized version of point set topology. It has been pointed out by
Stadler and Stadler (2002) that accessibility in a natural way implies a weak notion
of closure that turns out the a convenient starting point for the formal development
of the theory that is given in section 4. The abstract description of phenotype spaces
as objects that have even less a priori structure than topological spaces requires us to
investigate the properties of each individual phenotype space before predictions are even
conceivable. We may ask, for instance, whether there is a notion akin to “dimension”
that can be related to the notion of character or module. This issue was partially
explored by Stadler et al. (2001) in terms of a factorization of the space.

The motivation for the theory developed in this contribution is to obtain a mathemat-
ical language in which the origin of evolutionary novelties can be described and modeled.
In the next section the problems associated with describing evolutionary novelties are
discussed in order to motivate the present approach. After these conceptual preliminar-
ies we provide an intuitive summary of the mathematical results as a guide to read the
mathematical sections 4 and 5. In section 6 we return to an intuitive interpretation of
the mathematical framework developed in this paper.

2. Conceptual Preliminaries

Population genetic theory is the basis for all major branches of evolutionary biology
explaining the origin of adaptations, social behavior as well as the origin of species (Fu-
tuyma, 1998). For one class of evolutionary processes, however, population genetics has
been surprisingly uninformative, i.e. the origin of evolutionary novelties (Wagner et al.,
2000). Novelties are parts of a body plan that are neither homologous to an ancestral
character nor serially homologous to another part of the body (Müller and Wagner,
1991). Various explanations have been given for that apparent limitation (Fontana and
Buss, 1994; Gilbert, 2000; Wagner et al., 2000). One line of argumentation holds that
the limited success of population genetic theory in dealing with evolutionary novelties
is not due to an inherent conceptual limitation of the Neo-Darwinian theory of evolu-
tion. Rather it has been argued that the reason is conditional on the mathematical
structure of population genetic theory (Shpak and Wagner, 2000). The variables of pop-
ulation genetic theory are genotype frequencies and derived quantities, like haplotype
frequencies, allele frequencies and linkage disequilibria. The parameters of the theory
are fitness values of genotypes and their derived variables, like additive effects etc, as
well as parameters describing the transmission process: mutation and recombination
rates, inbreeding coefficients and so on. In this mathematical picture the phenotype is
excluded from consideration. For that simple reason questions about the evolution of
phenotypic organization (novelties) can not even be stated as problems. Any informa-
tion about the organization of the phenotype is implicitly given by the parameters and
the structure of the equations describing changes in genotype frequencies.
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Quantitative genetic theory is a branch of population genetics which does have a
representation of the phenotype as a model variable, namely the state of quantitative
attributes of the phenotype like body weight or clutch size. The objective of quanti-
tative genetic theory is to predict the changes of the distribution of these quantitative
attributes caused by mutation, recombination, inbreeding and selection (Bürger, 2000).
This approach assumes that the processes modeled by the equations do not change the
set of relevant attributes of the phenotype. In other words, it is assumed that the charac-
ters of a phenotype do not change. This assumption excludes any meaningful discussion
of evolutionary novelties, which per definitionem are the addition of phenotypic char-
acters to the body plan of the organism. Quantitative genetic theory predicts changes
given an unchanging body plan, because the set of descriptors of the phenotype is not a
variable in the mathematical language used.

This limitation of mathematical evolutionary theory can only be overcome if one finds
a mathematical language in which the number and kind of phenotypic characters is not
assumed a priory but is a result of an analysis of the model (Wagner and Laubichler,
2000; Shpak and Wagner, 2000; Stadler et al., 2001). We think that the theory of
configuration spaces based on accessibility structures is such a language and we will use
that language to achieve two goals: 1) to develop a mathematical character concept that
allows the description of the origin and the loss of characters in evolutionary change, and
2) to clarify some elusive concepts like homology (i.e., character identity), body plans
and innovation.

We think that the theory of configuration spaces is particularly well suited for this set
of goals. Configuration spaces are defined on the bases of genetic operators which trans-
form genotypes and phenotypes Reidys and Stadler (2002). As such they are rooted in
the Neo-Darwinian insight that evolution results from the fixation of heritable variation
produced by mutation and/or recombination. The theory of configuration spaces also
does not make any a priori assumptions about the topological properties of the abstract
spaces induced by mutation or other genetic operators. In contrast, quantitative genetic
theory assumes that phenotypic evolution can adequately be described in a multi di-
mensional Euclidian space, with all its strong topological properties. No justification is
usually given for that assumption. Configuration spaces also do not imply any assump-
tions about which parts of the organism are relevant characters. In fact there is not
even a vocabulary in this theory that describes what a character is in a physical sense.
All that is assumed is that there are organisms and that there are genetic processes that
can transform the phenotypes of organism in some knowable fashion. Hence configura-
tion spaces do not require us to make any ontic commitments on whether cells, genes
or organs are the relevant units. All we assume is that organisms are transformed and
that the rules of these transformation can be described in an abstract (pre-) topological
space (Stadler et al., 2001).

The next question is how one can use the information about the evolutionary process
represented in a configuration space to define a biologically meaningful character con-
cept. We propose that the most promising avenue is to start with Lewontin’s notion of
“quasi-independence.” This concept was introduced by Lewontin (1978) to clarify the
mechanistic assumptions underlying the adaptationist research program. Explaining a
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character state as an adaptation caused by natural selection requires the assumption
that the character state can be produced by mutation without significantly affecting the
functionality and or structure of the rest of the body. This notion does not assume that
genetic and mutational variation among characters is stochastically independent (i.e. is
not correlated). All that is assumed is that genetic variation can be produced at not too
low rate that natural selection can adjust one character without permanently altering
other attributes of the phenotype. Hence we interpret the notion of quasi-independence
as a statement about the topological properties of phenotypic configuration spaces. In
(Stadler et al., 2001) we argued that quasi-independence is equivalent to local factoriz-
ability of the phenotypic configuration space. Local factorization means that the vari-
ational neighborhood of a phenotype can be described by the combination of character
states, i.e. the coordinates of “dimensions” or factors. Characters which correspond
to local factors have been called “structurally independent” (Stadler et al., 2001) to
emphasize that this notion is our interpretation of Lewontin’s concept rather than his
original definition. The biological meaning of “locally factorizable” is that there are no
variational limitations on realizing all possible combinations of character states. The
range of phenotypes that can be described as a combination of states of a given set of
character is of course limited. For instance it may be possible to describe all squirrel
species by a combination of a character states of the set of “squirrel characters”, but
there is no such set of characters which would describe the phenotypic disparity of all
metazoans. Therefore it was important to develop the mathematical concept of local
factorization in (Stadler et al., 2001). In this paper the theory of local factorization is
developed further and applied to the question of how character identity can be defined
and how the evolution of novelties can be described within this framework.

3. Factorization of Phenotype Space: Non-technical Summary

In this section we give an intuitive preview of the results described in the mathematical
part of this paper. Here we avoid many of the technical fine points that will be covered
below and which will also be important for the biological interpretation of the results
after the next section.

The notion of factorizability as a way to define characters and character identity can
only be useful if it can be developed into a concept that can apply locally, i.e. to restricted
parts of the configuration space. It is unlikely that there are any identifiable characters
that apply to all living beings or even to reasonably large taxa, such a vertebrates or
insects. There is no set of characters that would allow describing the organismal diversity
as a combination of character states of this set of characters. Only within a limited
range of phenotypic variation will we be able to identify quasi-independent characters
that will give a reasonable framework for describing the variational tendencies of these
characters. Hence critical for the present paper is the introduction of the notion of a
local factorization.

The first step is to recognize that it is possible to restrict our attention to a smaller
region Y within the whole phenotype space X, Y ⊂ X and then may be find a factor-
izable part that embeds this subspace Y . Such a factorization can be called regional
since it applies to a more limited region of the whole phenotype space. The smallest
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N(x) N(x) N(x)

Y Y
X XX

Figure 1. Global, regional, and local factors. If the entire phenotype space admits a fac-
torization (r.h.s.) then each “rectangular” region, as well the vicinities of all its points are
factorizable. The existence of a factorizable region (middle) implies that the vicinities of all
interior points of this region decompose accordingly. Finally, a factorization might be possible
only locally (l.h.s).

meaningful region to factorize is the factorization of the smallest neighborhood of a par-
ticular phenotype x ∈ X, also called the vicinity of x, N(x). See Fig. 1. If it exists,
we call the factorization of the vicinity of x the local factorization around x. The local
factorization of x summarizes the variational degrees of freedom of the type x and is
thus even experimentally operational.

The notion of local factorization is the basis for our topological approach to character
definition, since it can be understood as an intrinsic dispositional (variational) property
of the type x, say a certain phenotype. This notion also provides a connection between
the local properties of phenotypes and the more global properties of the phenotype space.
An important technical result is that any factorization of a finite space into parts that
cannot factorized further is unique. This means that the identification of characters
based on the variational degrees of freedom is entirely non-arbitrary.

X
x

y

N(x)

N(y)

H

Figure 2. A regional factorization of H implies local factorizations at the interior points x

and y that have all factors of H in common.

The next step is to clarify what it means, in the topological language, to say that
two types x and y have the same characters, or in other words, have consistent local
factorizations. Note that the vicinities of x and y do not need to overlap. Here we
propose that the local factorizations of x and y are comparable (or consistent) if x and y
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can be embedded in a subspace H that has a regional factorization H1 ×H2 × · · ·×Hn,
Fig. 2. Factors in N(x) and N(y) are then comparable or equivalent if they project onto
the same factors Hi of the regional factorization of H. In other words, embedding x
and y into a regional factorization that encompasses both N(x) and N(y) allows one to
used the regional factors to establish correspondences between the local factors Nk(x)
and Nl(y).

X

x

N(x)

A

By

N(y)

z

N(z)

Figure 3. Suppose the factorizations in the regions A and B are such that the two resulting
factorizations of the vicinity N(z) have common factors. The corresponding factors also appear
in the local factorizations around N(x) ⊂ A and N(y) ⊂ B and hence establish as (partial)
correspondence between the factors of N(x) and N(y) even though x and y are not contained
a common factorizable region.

This method of establishing correspondence between local factors (characters) requires
that there is a region containing the two types which is in itself factorizable. Hence the
reach of this method can be limited, if the phenotype space is complex and irregular.
It is however possible to identify corresponding factors even between types which are
not embedded in a factorizable region. To do this we have to introduce the notion of
common factors of two overlapping but distinct factorizable regions, say A and B. Let
us assume that the overlap of A and B contains a type y and its vicinity N(y). Of
course N(y) is factorizable in this situation. Common factors of A and B are then those
which correspond to the same factors or combination of factors of N(z). Note that
the two regions discussed in the previous paragraph do not need to be embedded into a
larger regions which is factorizable. This affords us with the opportunity to establish the
correspondence between two types, say x and z, which are not embedded in a regional
factorization. All we need is a type y which shares common factors with x and y through
regional factorizations that embed x and y, say A, and y and z, say B, Fig. 3. If A and
B overlap and have common factors, these common factors can be used to establish a
correspondence between some factors of x and z. This approach is similar to the method
of local continuations through overlapping neighborhoods in functional analysis, Fig. 4.

The intuitive interpretation of the need for this construct is that there can be a
character (i.e. a factor) which exists between quite different organisms, even if all or most
of the other characters of the organisms are different. Because all the other characters
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are different there is no region of the phenotype space that can be described with the
same set of characters, i.e. there is no regional factorizable subspace that contains both
types. But some of the characters still can be the same, like those of members from the
same phylum, even though each class has a quite different decomposition of the body in
addition to the shared factors. Hence the construction of local continuation is necessary
to establish the correspondence of factors (characters) in organism that are not part of
the same regional factorization.

Figure 4. The correspondence between factors can be extended further through a series of
regional factorization, defining the subset on which a factor exists as the interior of the union
of all the overlapping factorizable regions.

An interesting consequence of the notion of overlapping regional factorizations is a
result about the dimensionality of the local neighborhoods in the overlap of the regional
factorizations. Since the local factorization in an overlap between two regional factor-
izations has to be compatible with either factorization the dimensionality in the region
of overlap has to be at least as high and in most cases higher than in either of the two
region. In particular we show below that the dimensionality of every local factorization
in the interior of the overlap of A and B has to be

dim N(x) = dim A + dim B − φ(A, B)

where φ(A, B) is the number of common factors of the regions A and B. This fact
will have interesting consequences for evolution of new types, i.e. the evolution from
one area of regional factorization to another. This is a situation which pertains to the
evolutionary origin of new characters and types of body organization.

In the following two sections we develop the mathematical framework. We start with
the axioms of generalized topological spaces and briefly show how genetic operators
such as mutation and recombination give rise to such abstract spaces in a natural way.
After introducing the basic constructs of subspace, quotient space, and product space
we consider the global, regional, and local versions of factorizability and their relation-
ships. In section 5 we specialize our framework to finite sets. In this setting the Unique
Prime Factor Theorem (Imrich and Klavžar, 2000) holds, which is a prerequisite for the
“continuation results” mentioned above.
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4. Generalized Topological Spaces

4.1. Genetic Operators. The abstract description of recombination spaces is pio-
neered in (Gitchoff and Wagner, 1996; Stadler and Wagner, 1998; Stadler et al., 2000).
It is based on the notion of the recombination function R : X ×X → P(X) assigning to
each pair of parents x and y the recombination set R(x, y) introduced by Gitchoff and
Wagner (1996) as the set of all all their potential offsprings. Recombination in general
satisfies two axioms:

(X1) {x, y} ∈ R(x, y),
(X2) R(x, y) = R(y, x).

Condition (X1) states that replication may occur without recombination, and (X2)
means that the role of the parents is exchangeable. Often a third condition

(X3) R(x, x) = {x}

is assumed. Note that (X3) is not satisfied by models of unequal crossover (Shpak and
Wagner, 2000; Stadler et al., 2002). Functions R : X × X → P(X) satisfying (X1),
(X2), and (X3) were considered recently as so-called transit functions (Changat et al.,
2001) and as P-structures, with a focus on algebraic properties, in (Stadler and Wagner,
1998; Stadler et al., 2000). A closure operator associated with a recombination function
was introduced by Gitchoff and Wagner (1996) as

cl(A) =
⋃

x,y∈A

R(x, y) (1)

The situation is much simpler in the case of mutation. Following the spirit of the
Gitchoff-Wagner closure function we define cl(A) as the set of all mutations that can be
obtained from a set A in a single step.

The abstract notion of assigning a “closure” cl(A) to every subset A of the set of types
X is the starting point of our formal development. In general, we may think of cl(A) as
the set of all types that can be produced from a “population” in a single step.

4.2. Closure and Neighborhood. Let cl : P(X) → P(X) be a set-valued set function
which we call the closure function. Its conjugate is the interior function int : X → X
defined by

int(A) = X \ cl(X \ A) . (2)

The neighborhood function N : X → P(P(X)) is defined by

N (x) = {N ⊆ X|x ∈ int(N)} (3)

It is not hard to show that closure, interior, and neighborhood can be used to define
each other. For example, given the neighborhood function N , the closure function is
obtained as

x ∈ cl(A) ⇐⇒ (X \ A) /∈ N (x) (4)

The most commonly assumed properties of closure function, or equivalently, neighbor-
hood functions are summarized in Table 1. The equivalence of closure and neighborhood
versions of these conditions is well-known, see e.g. (Gastl and Hammer, 1967). We say
that (X, cl) is an isotone space if (K0) and (K1) is satisfied. If in addition (K2) holds
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Table 1. Axioms for Generalized Closure Spaces

closure neighborhood
(K0) cl(∅) = ∅ X ∈ N (x)

A ⊆ B =⇒ cl(A) ⊆ cl(B)
(K1) isotone cl(A ∩ B) ⊆ cl(A) ∩ cl(B) N ∈ N (x) , N ⊆N ′ =⇒ N ′ ∈ N (x)

cl(A) ∪ cl(B) ⊆ cl(A ∪ B)
(K2) expansive A ⊆ cl(A) N ∈ N (x) ⇒ x ∈ N
(K3) sub-linear cl(A ∪ B) ⊆ cl(A) ∪ cl(B) N ′, N ′′ ∈ N (x) =⇒ N ′ ∩ N ′′ ∈ N (x)
(K4) idempotent cl(cl(A)) = cl(A) N ∈ N (x) ⇐⇒ int(N) ∈ N (x)

then (X, cl) is a neighborhood space. Neighborhood spaces satisfying (K3) are the pre-
topological spaces studied in detail by Čech (1966). Finally, a pretopological space with
idempotent closure is a topological space in the usual sense. If (K1) holds then equ.(4)
is equivalent to the more common expression (Day, 1944, Thm.3.1,Cor.3.2)

cl(A) = {x ∈ X|∀N ∈ N (x) : A ∩ N 6= ∅} (5)

Since the mutants of each parent are independent of the rest of the population we
have

cl(A) =
⋃

x∈A

cl({x}) (6)

in the case of mutation. This condition is equivalent to (K1) and (K3) in finite sets.
We assume that replication without mutation is possible, thus x ∈ cl({x}) and hence
A ∈ cl(A), i.e., (K2) holds. The validity of (K0) is assumed by definition. It follows that
mutation defines a pretopology on the genotype space, see (Stadler et al., 2001).

The case of recombination is dealt with in some more detail in (Stadler and Stadler,
2002). We have

Theorem 1. The closure space (X, cl) arising from any recombination function R for
which (X1) and (X2) hold, satisfies (K0), (K1), and (K2).

Condition (X3) is then equivalent to cl({x}) = {x}, i.e., the well-known (T1)-separation
axiom.

Consider a genotype-phenotype map Φ : (V, cl) → X from the genotype space (V, cl),
which we describe as a generalized closure space with closure function cl into a set of
phenotypes X. The GP-map Φ defines a closure function on X such that y ∈ c(B)
means “phenotype y is accessible from the collection B of phenotypes”. Is is argued at
length by Fontana and Schuster (1998a); Stadler et al. (2001) that this construction is
meaningful because the pre-images Φ−1(y) = {v ∈ V |Φ(v) = y} from extensive neutral
networks. If we assume that b′ is accessible from b iff there is a pair of genotypes v and
v′ with b = Φ(v) and b′ = Φ(v) that are accessible in genotype space obtain the so-called
induced closure or accessibility closure

c∗(B) = Φ(cl
(

Φ−1(B)
)

) (7)
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on the phenotype space X. The other extreme, where we require accessibility from every
genotype, is known as shadow topology (Stadler et al., 2001). A useful closure structure
on the phenotype space will in general be finer than the accessibility closure and coarser
than the shadow closure. We emphasize that the entire discussion in this contribution
is independent of the details of the definition of the closure function on the phenotype
space. It will be sufficient to assume that a closure function exists that reflects the
mutual accessibilities of phenotypes.

4.3. Neighborhood Spaces. In this section we collect some basic facts on neighbor-
hood space that will be used throughout the mathematical parts of this contribution.
The theory of neighborhood spaces directly generalizes the theory of topological spaces.
Additional information of neighborhood spaces can be found in the work of Day (1944);
Hammer (1962); Gastl and Hammer (1967); Gni lka (1994). For a detailed account of
separation axioms in neighborhood spaces we refer to (Stadler and Stadler, 2001).

4.3.1. Subspaces. The notion of a subspace in the topological context should not be
confused with subspaces of vector spaces. In the topological context, a subspace of X is
simply an arbitrary subset that inherits its structure from X.

Definition 2. Let (X, cl) be a neighborhood space and let Y ⊆ X. We say that (Y, cY )
is a subspace of (X, cl) if cY (A) = cl(A) ∩ Y for all A ⊆ Y .

We will sometimes use the notation Y b X. It follows directly from the definition
that the restriction map (Y, cY ) → (X, cl) : x 7→ x is continuous. Furthermore, the
relative interior is

intY (A) = Y ∩ int(A ∪ (X \ Y )) (8)

and the neighborhood systems in (Y, cY ) are given by

NY (x) = {N ∩ Y |N ∈ N (x)} (9)

This can be seen e.g. following the lines of (Čech, 1966, 17.A).

4.3.2. Product Spaces. Products of neighborhood spaces will play a crucial role in our
discussion.

Definition 3. Let (X1, c1) and (X2, c2) be two isotonic closure spaces. Then the product
space (X1×X2, c1× c2) is defined by means of the neighborhood system N (x1, x2), where

N ∈ N (x1, x2) ⇐⇒ ∃N1 ∈ N1(x1) and N2 ∈ N2(x2) such that N1 × N2 ⊆ N (10)

For sets of the form A1×A2 this translates to a simple formula for the product closure
in isotonic spaces, see also (Gni lka, 1994, Thm.8.1)

cl(A1 × A2) = c1(A1) × c2(A2) (11)

If (X1, c1) and (X2, c2) satisfy (K2), (K3), or (K4), respectively, so does their product.
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4.3.3. Quotient Spaces. Let P be a partition of X and denote by [x] the class of P to
which x belongs. The function χ � : X → X/P, x 7→ [x] is called the canonical map from
X to X/P. We use the abbreviation [A] = χ � (A).

Definition 4. Let (X, cl) be an isotone space and P be a partition of X. Then the
quotient space X/P is the isotone space on the set X/P that has

B([x]) =
{

[N ]
∣

∣N ∈ N (x′) for all x′ ∈ [x]
}

(12)

as a basis of the neighborhood system of [x].

It follows that equ.(12) defines the finest structure on X/P such that χ � is continuous.
(For all [x] and all M ∈ M([x]) we need that for each x′ ∈ [x] there is Nx′ ∈ N (x′) such

that [N ] ⊆ M , i.e.,
⋃

x′∈[x][Nx′ ] =
[

⋃

x′∈[x] Nx′

]

⊆ M . The argument is then essentially

the same as in (Fischer, 1959).)

4.4. The Factorization Theorem. Throughout this contribution we will be con-
cerned with criteria under which a given isotonic space can be represented as a product
of other non-trivial neighborhood spaces.

Definition 5. An isotone space (X, cl) is factorizable if there are non-trivial spaces
(X1, c1) and (X2, c2) such that (X, cl) ' (X1, c1) × (X2, c2).

Before we derive a characterization of factorizability we need a few more definitions:
A pair of partitions P1 and P2, with canonical maps χ �

1
(x) = [x]1 and χ �

2
(x) = [x]2,

is orthogonally complementary if for all x ∈ X holds [x]1 ∩ [x]2 = {x}. Furthermore,
given X and a pair of partitions P1 and P2 of X we introduce the map

ı : X → X/P1 × X/P2, x 7→ ı(x) = ([x]1, [x]2) (13)

which defines the coordinate representation of x ∈ X for the product of the quotient
space.

By construction ı is continuous. It is not hard to verify that ı is invertible if and
only if P1 and P2 are orthogonally complementary, see (Stadler et al., 2001) for a more
detailed discussion. It follows that X is factorizable if ı−1 is continuous (in which case ı
is an isomorphism between X and X/P1 × X/P2, and neither P1 nor P2 is the discrete
partition (in which case neither X/P1 nor X/P2 consists of a single point.

The product of the quotient spaces has a basis of its neighborhood system that is of
the form [N ′]1 × [N ′′]2 with N ′ ∈ N ([x]1) and N ′′ ∈ N ([x]2). Furthermore, we have
ı(A) ⊆ [A]1 × [A]2 for all sets A ⊆ X. Factorizability thus requires in particular that
ı(N) is a neighborhood in the product space for all N ∈ N (x). This condition can be
rewritten as a condition on neighborhoods in (X, cl) and we obtain

Theorem 6. An isotone space (X, cl) is factorizable if and only if a there is a pair of
non-trivial orthogonally complementary partitions P1 and P2 such that the neighborhood
systems satisfy the following “rectangle condition”:

∀N ∈ N (x) ∃N ′, N ′′ ∈ N (x) : [N ′]1 × [N ′′]2 ⊆ ı(N) . (14)
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In pretopological spaces the rectangle condition simplifies because of the “filter prop-
erty” (K3) of neighborhoods: For any two neighborhoods N ′ and N ′′ of x, their inter-
section N ′ ∩ N ′′ = N ′′′ is again a neighborhood. Thus we can replace N ′ and N ′′ by
the same neighborhood N ′′′ in equ.(14) and find the following stronger version of the
rectangle condition:

∀N ∈ N (x) ∃N ′ ∈ N (x) : [N ′]1 × [N ′]2 ⊆ ı(N) . (15)

4.5. Local Factorization. It was argued already by Stadler et al. (2001) that it may
be unlikely that the space of all possible phenotypes will be factorizable as a whole. A
local theory of factorization is thus desirable. We start with a simple but useful technical

Lemma 7. Suppose (X, cl) has a factorization (X, cl) ' (X1, c
1)× (X2, c

2), let Y1 ⊆ X1,
Y2 ⊆ X2, and Y = Y1 × Y2. Then (Y1, c

1
Y1

)× (Y2, c
2
Y 2) ' (Y, cY ) is a subspace of (X, cl).

Proof. The neighborhoods of y = (y1, y2) ∈ Y are the sets N∩(Y1×Y2) for all N ∈ N (y).
This set-system has a basis of the form (N1×N2)∩(Y1×Y2) = (N1∩Y1)×(N2∩Y2) where
N1 ∈ N (y1) and N2 ∈ N (y2). On the other hand, Ni ∩ Yi, i = 1, 2 are (by construction)
a basis of the neighborhood systems on the subspaces (Yi, c

i
Yi

). �

Lemma 7 allows us to transfer a factorization down to all its “rectangular” subspaces.
In particular, we already know that the neighborhood system of each point has a basis
of rectangular neighborhoods by equ.(14). This suggests to consider a local version of
factorizability (Stadler et al., 2001):

Definition 8. (X, cl) is locally factorizable in x ∈ X provided for each neighborhood
N ′ ∈ N (x) there is a neighborhood N ⊆ N ′ such that the subspace (N, cN) is factorizable.

Suppose Y b X has a factorization into subspaces Y1 and Y2. Of course such a regional
factorization does not imply that the entire space X is factorizable. However, we have
the following

Lemma 9. Let (Y, cY ) be a subspace of (X, cl) that is factorizable with the two factors
Y1 and Y2. Suppose x ∈ int(Y ) and such that {xi} /∈ NYi

(xi) for i = 1, 2, where (x1, x2)
is the coordinate representation of x. Then (X, cl) is locally factorizable at x.

Proof. By construction the subspace (Y, cY ) is factorizable at x. Since x ∈ int(Y ) there
is a neighborhood N ∈ N (x) (w.r.t. X) that is contained in Y and that is of the form
N ′ × N ′′ with N ′ 6= {x1} and N ′′ 6= {x2}. �

We can summarize the results of this section as follows: If X = X1 × X2 is a global
factorization, then every rectangular subspace Y = Y1 × Y2 has a regional factorization.
The existence of a regional factorization of some subspace Y b X in turn implies a local
factorization for all x ∈ int(Y ) (subject to the technical condition that factors must not
be sets consisting of a single point).

It is important to note that we cannot expect to obtain useful information about the
local factors of a boundary point y ∈ ∂Y = cl(Y ) \ int(Y ) from a factorization of a
subspace (Y, cY ) b (X, cl).
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4.6. Prime Factors and Common Refinement. All the above results can be gen-
eralized by induction to a finite number of factors. We write

(X, cl) '
n
∏

k=1

(Xk, c
k) (16)

Now consider a set Q ⊆ X and the canonical projections χ �
k

: X → Xk, x → xk = [x] �
k
.

Clearly we have

(Q, cQ) b

(

n
∏

k=1

χ�
k
(Q),

n
∏

k=1

ck
χ �

k
(Q)

)

b

(

n
∏

k=1

Xk,
n
∏

k=1

ck

)

' (X, cl) (17)

where b here means subspace. By abuse of notation we write x = (x1, x2, . . . , xn) and
call this a coordinate representation of x (w.r.t. a given factorization).

In the following we will use the abbreviation

Q ⇓ Xk = χ�
k
(Q) (18)

for the projection of a subset (subspace) Q b X onto the factor space Xk. The most
important properties of the projection operator can be summarized as follows. Suppose
A =

∏

k Ak with Ak ⊆ Xk and Q ⊆ A. Then Ak = A ⇓ Xk and Q ⇓ Ak = Q ⇓ Xk. If

Q′ ⊆ Q then Q′ ⇓ Ak ⊆ Q ⇓ Ak. Finally, Q ⇓ Ak =
[

∏

j(Q ⇓ Aj)
]

⇓ Ak.

Definition 10. A factorization (X, cl) '
∏

k(Xk, c
k) is a prime factor decomposition if

none of the factors (Xk, c
k) is factorizable.

In general, the prime factor decomposition is not unique as the following example by
Imrich and Klavžar (2000) shows. We will see below that the so-called strong product of
graphs corresponds to the product of finite pretopological spaces. We denote by Kn the
complete graph with n vertices (and edges connecting each vertex pair). The symbol ∪̇

stands for the disjoint union of graphs. Using the well known formula Kp � Kq = Kpq

and the validity of the distributive law A � (B ∪̇C) = (A � B) ∪̇(A � C) we may write

K1 ∪̇K2 ∪̇K4 ∪̇K8 ∪̇K32 =

(K1 ∪̇K2 ∪̇K2
2 ) ∪̇(K3

2 ∪̇K4
2 ∪̇K5

2) =
(

K1 ∪̇K2 ∪̇K2
2

)

�
(

K1 ∪̇K3
2

)

=

(K1 ∪̇K2
2 ∪̇K4

2 ) ∪̇ (K2 ∪̇K3
2 ∪̇K5

2) =
(

K1 ∪̇K2
2 ∪̇K4

2

)

� (K1 ∪̇K2)

None of the graphs G1 = K1 ∪̇K2
2 ∪̇K4

2 , G2 = K1 ∪̇K3
2 , G3 = K1 ∪̇K2

2 ∪̇K4
2 , and G4 =

K1 ∪̇K2 is factorizable. Thus non-connected graphs in general do not have a unique
prime factor decomposition.

We say that the factorizations of X have the common refinement property if the
following holds. If X = X1 × X2 = Y1 × Y2 then there are spaces Z11, Z12, Z21, and Z22

such that X1 = Z11 × Z12, X2 = Z21 × Z22, Y1 = Z11 × Z21 and Y2 = Z12 × Z22.
Of course, if a space has a unique prime factor decomposition then it also has the

common refinement property. The converse is not true in general. In the finite case,
which we will consider next, however, the existence of unique prime factor decomposition
and the common refinement property are equivalent.
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5. Finite Sets

5.1. Vicinities. In the applications parts of this contribution we will be interested
mostly in the case of finite sets. In this case the neighborhood systems N (x) have a
finite basis, i.e., there is a collection B(x) ⊂ N (X) such that:

(1) If N ∈ N (x) then there is B ∈ B(x) such that B ⊆ N .
(2) If B′, B′′ ∈ B(x) and B′ ⊆ B′′ then B′ = B′′.

Clearly, B(x) is uniquely defined. Condition (2) guarantees that B(x) is minimal. Note
that existence of B(x) is guaranteed only in the case.

In particular, if B(x) contains only a single set, N(x), then N (x) = {N |N(x) ⊆ N}
is the “discrete filter” of N(x). We call N(x) the vicinity (smallest neighborhood) of
x. It follows immediately that a finite neighborhood space is a pretopology if and only
if B(x) = {N(x)} for all x ∈ X. In particular, the product of two finite pretopological
spaces (X1, c1) and (X2, c2) with vicinities N1(x1) and N2(x2), resp., is again a finite
pretopological space (X1 × X2, c12) with vicinities

N12(x1, x2) = N1(x1) × N2(x2) (19)

Furthermore, we have

cl({(x1, x2)}) = c1({x1}) × c2({x2}) (20)

as an immediate consequence of equ.(11).
For finite neighborhood spaces we have the following generalization:

Lemma 11. Let Bi(xi) = {Bj
i (xi)|1 ≤ j ≤ `i(x)} be the bases of neighborhood spaces on

Xi, i = 1, 2. Then

B12(x1, x2) = {Bj1
1 (x1) × Bj2

2 (x2)|1 ≤ j1 ≤ `1(x1), 1 ≤ j2 ≤ `2(x2)} (21)

is the (uniquely defined) vicinity-basis of their product. Furthermore, all products of
vicinities are distinct vicinities in the product space.

Proof. Eq.(21) follows directly from the definition of the product in eq.(10). To see that
Bj1

1 (x1) × Bj2
2 (x2) ⊆ Bk1

1 (x1) × Bk2

2 (x2) implies i1 = k1 and i2 = k2 we observe that this
implies Bji

i (xi) ⊆ Bki

i (xi), i = 1, 2. Equality now follows from item (2) in the definition
above. �

5.2. Digraphs. Finite pretopological spaces are equivalent to directed graphs with
vertex set X. Before introducing this correspondence we proof the following simple

Lemma 12. Let (X, cl) be a finite pretopological space. Then y ∈ N(x) if and only if
x ∈ cl(y).

Proof. x ∈ cl(y) iff y ∈ N for all N ∈ N (x), i.e., iff y ∈ N(y). �

At the level of individual points N and cl are therefore “dual” in the same sense as
the in-neighbors and the out-neighbors of a directed graph.

Definition 13. Let (X, cl) be a finite pretopological space. The graph Γ(X, cl) is the
directed graph with vertex set X and an edge xy if and only if x 6= y and y ∈ cl(x), i.e.,
x ∈ N(y). We call cl(x) the out-neighbors of x and N(y) the in-neighbors of y.
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This definition establishes a one-to-one correspondence between finite directed graphs
and finite pretopological spaces, see (Stadler et al., 2001). In the following we briefly
recall the correspondences between graph-theoretical and topological language.

A graph H is a subgraph of G, H ⊆ G, if VH ⊆ VG and EH ⊆ EG. A graph H is
an induced subgraph, in symbols H b G, if VH ⊆ VG and for all x, y ∈ VH , xy ∈ EH if
and only if xy ∈ EG. The induced subgraphs are exactly the pretopological subspaces
on a given point set. The subgraph of G induced by the vertex set N(x) thus represents
the pretopological vicinity in the graph-theoretical context. By abuse of notation we
shall use the same symbol for a vertex set and a the corresponding induced subgraph
(subspace).

A directed graph is symmetric if the sets of in-neighbors and out-neighbors agree at
each vertex, i.e., if N(x) = cl(x) for all x ∈ X. This is the finite case of the following
two symmetry axioms, which are equivalent in neighborhood spaces.

(R0) x ∈ cl(y) = y ∈ cl(x).
(S) x ∈ N ′ for all N ′ ∈ N (y) implies y ∈ N ′′ for all N ′′ ∈ N (x).

The symmetric digraphs are equivalent to the undirected graphs.
Let H b G. Then x ∈ VH is an interior vertex of H b G if N(x) ⊆ VH , i.e., N(x) b H.

Again this matches the definition in pretopological spaces: “x is an interior point of H
if H contains a neighborhood of x”. Consequently, we see that int(H) is the set of all
interior points of H. Conveniently, we will regard int(H) also as an induced subgraph
of H. This allows us to speak e.g. of the connectedness of int(H). In the following
we will regard a vertex set always as an induced subgraph of G unless explicitly stated
otherwise.

Remark. We have re-interpreted here the directionality of the arcs of Γ compared to
the discussion in (Stadler et al., 2001). In this contribution we regard cl(x) is the out-
neighbors because we interpret the closure cl(A) instead of the vicinity of A as the set of
potential offspring of A. This is the natural interpretation for the recombination case and
matches the usage of the recombination closure operator in (Gitchoff and Wagner, 1996;
Stadler and Stadler, 2002). The vicinities, which took a central role in the interpretation
of the pretopological framework in our previous paper (Stadler et al., 2001) are here
represented as the in-neighbors. We argue that representing the “immediate neighbors”
of a population A by its closure cl(A) is more natural than using vicinities because the
closure-based formalism extends without modifications to all genetic operators and to
the case of infinite spaces while a vicinity-based formalism does not. The reason is that
vicinities are in general not neigborhoods in the infinite case.

Fortunately, there is a duality between closures and vicinities of individual points in
finite pretopological spaces. This guarantees that the change of the arrow directions does
not affect any of the conclusions in our previous paper. Only the graphical represention
is modified. To illustrate this fact we briefly outline here one simple example: Let f :
(X, cl) → (Y, cl) be a function between two pretopological spaces. Then f is continuous
iff for each x and each neighborhood M of f(x) there is neighborhood N of x such that
f(N) ⊆ M . Reformulating this argument using vicinities we immediately obtain: “f is
continuous at x iff f(N(x)) ⊆ M(f(x)).” On the other hand, closure preservation yields
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Figure 5. Example of a strong graph product

the analoguous condition: f(cl(x)) ⊆ cl(f(x)). Hence it does not matter whether we use
the in-neighbors or the out-neighbors to determine whether f is continuous. /

5.3. The Strong Product of Graphs. The product of finite pretopological spaces
translates, in the finite case, into the strong product of graphs, see (Stadler et al., 2001).

Definition 14. Let G = (VG, EG) and H = (VH , EH) be finite simple graphs (directed
or undirected). The strong product G � H has the vertex set VG � H = VG × VH and
(x1, x2)(y1, y2) ∈ EG � H if either (i) x1 = y1 and x2y2 ∈ EH , or (ii) x1y1 ∈ EG and
x2 = y2, or (iii) x1y1 ∈ EG and x2y2 ∈ EH . The edges of type (i) and (ii) are called
Cartesian edges, edges of type (iii) are non-Cartesian.

A graph G is prime or non-factorizable if it is not isomorphic to a �-product of at
least two non-trivial (i.e., empty or one-vertex) graphs.

We denote the degree, in-degree and out-degree of a vertex x in a graph G by dG(x),
di

G(x), and do
G(x), respectively. For later reference we note the following simple fact:

dζ
G×H(x1, x2) = dζ

G(x1) + dζ
H(x2) + dζ

G(x1)dζ
H(x2) (22)

for ζ denoting the superscript for in-degree, out-degree, or undirected degree, respec-
tively. For the case of multiple factors equ.(22) generalizes to

dζ�
i Hi

(x1, x2, . . . xn) =

n
∑

i=1

dζ
Hi

(xi) +

n
∑

i<j

dζ
Hi

(xi)d
ζ
Hj

(xj)

+
n
∑

i<j<k

dζ
Hi

(xi)d
ζ
Hj

(xj)d
ζ
Hk

(xk) + . . . +
n
∏

l=1

dζ
Hl

(xl)

(23)

Probably the most important property of the strong product is

Proposition 15. (Imrich and Klavžar, 2000, chap.5) Every connected graph G has a
unique prime factor decomposition

G = �
n
∏

k=1

Gk (24)

up to the ordering of the factors.
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Figure 6. This graph (the non-Cartesian edges in each cube are omitted for clarity) is locally
factorizable at each vertex but not globally factorizable.

Hence the dimension of a graph G, defined as the number of dim G = n of prime
factors is well-defined. By definition dim G = 1 if and only if G is prime.

It is well known that the strong product of two graphs is connected if and only if each
factor is connected. A related result for directed graphs is the following simple

Lemma 16. A directed graph G = � ∏n

k=1 Gk is strongly connected if and only if each
factor is strongly connected.

Proof. It is clear that the product of two strongly connected graphs is strongly connected.
Conversely, suppose G is strongly connected. Consider xk, yk ∈ VGk

and let x, y be two
arbitrary vertices that have coordinates xk and yk in the k-th factor. By assumption
there is a directed path from x to y. The projection of this path onto Gk is necessarily
a connected directed path from xk to yk. Thus Gk is strongly connected. �

Not surprisingly, factorization at a global level is not necessary for local factorizability.
Figure 6 gives an example of a graph that is prime but allows for local factorizations at
every vertex.

Conjecture 17. Any connected finite neighborhood space has a unique prime factor
decomposition.

Remark. This is suggested by the discussion of combinatorial structures in (Lovász,
1967, 1971) that are very similar in to the finite neighborhood spaces considered here.
The unique prime factor decomposition of finite neighborhood spaces will be considered
elsewhere in more detail. /
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Figure 7. Proof of Theorem 19. The black boxes represent the prime factors of N(x). The
factorizations of A and B each introduce a partition of the prime factors of N(x), shown here
by red and blue boxes. The common factors correspond to the finest partition that is refined
by both the A and the B partition, which is indicated by the dashed green boxes.

5.4. Overlapping Local Factorizations. For the sake of clarity we will restrict our
discussion in this subsection to the case of finite graphs although the results remain valid
whenever we work in a situation in which the unique prime factor theorem holds.

The most important observation here concerns the intersection of two factorizable
induced subgraphs A, B b G. The following lemma simply rephrases the Unique Prime
factor Theorem for the special case of neighborhoods of a single point.

Lemma 18. Suppose A, B b G are factorizable such that A = � ∏m

k=1 Ak and B =
� ∏n

l=1 Bl and let x ∈ int(A) ∩ int(B), i.e., N(x) b A and N(x) b B. Then for each
of the factors Ak and Bl there is a collection of prime factors of N(x) = � ∏q

j=1 Nj(xj)
such that

N(x) ⇓ Ak = � ∏

j∈Ik

Nj(xj) and N(x) ⇓ Bl = � ∏

j∈Jl

Nj(xj) (25)

Furthermore, the index sets {Ik|1 ≤ k ≤ m} and {Jl|1 ≤ l ≤ n} each form a partition
of {1 . . . q}.

In simpler words, the q prime factors of N(x) are combined in different “packages” to
yield the restrictions of the given factorizations on A and B to N(x). (In the general
case, corresponding expressions hold for all vicinities Ni(x) ∈ B(x).)

We say that A and B have the factor Ak ∼ Bl in common if there is x ∈ int(A)∩int(B)
such that N(x) ⇓ Ak = N(x) ⇓ Bl. Since the factorizations of A and B, respectively,
each define a partition on the set of prime factors of N(x) we see that the number of
common factors is the number of classes in the join of these two partitions, see Figure 7.
We define φ(A, B) as the number of factors that the prime factor decompositions of A
and B have in common. The number φ(A, B) is well-defined as a consequence of the
uniqueness of the the prime factor decomposition. Of course, we have

1 ≤ φ(A, B) ≤ min{dim A, dim B} (26)

Recall that int(A ∩ B) = int(B)∩ int(B) holds in pretopological spaces but not in general
neighborhood spaces.

We can use this observation to derive a lower bound on the number of factors into
which N(x) must decompose:

Theorem 19. Let A, B b G be factorizable and let x ∈ int(A) ∩ int(B). Then

dim N(x) ≥ dim A + dim B − φ(A, B) (27)

where φ(A, B) is the number of factors that A and B have in common at x.
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Proof. As a consequence of the discussion above we have to solve the following combi-
natorial problems, Figure 7. Let A and B be two partitions of a finite set X. What is
the minimum cardinality of X given the number of classes of A, B, and A∨B? (Recall
that A ∨ B is the partition of X defined as the transitive closure of the relation “x
and y belong to the same class of A or B”. Similarly, the classes of A ∧ B are defined
by “x and y belong to the same class of both A and B”, i.e., they are the non-empty
intersections of the form A ∩ B with A ∈ A and B ∈ B.)
Of course, dim N(x) ≥ |A ∧ B|, because each class must contain at least one factor of
N(x). The result follows directly from the inequality

|A ∧ B| ≥ |A| + |B| − |A ∨ B| (28)

which is easily proved by induction in the number of classes of B. �

5.5. Continuation of a Local Factorization.

Definition 20. Let (X, cl) be a neighborhood space. Two points x, y ∈ X have consistent
local factorizations if there is a subset Y ⊆ X such that x, y ∈ int(Y ) and the subspace
Y b X has a factorization Y '

∏

j Yk.

Under these assumptions we see that N (x) has a basis consisting of sets of form
∏

k N ′

k, where N ′

k ⊆ N (xk) and N ′

k ⊆ Yk. Analogously, N (y) has a basis of the form
∏

k N ′′

k with N ′′

k ⊆ N (yk) and N ′′

k ⊆ Yk. This establishes a correspondence between the
neighborhoods N ′

k and N ′′

k , even though the sets N ′

k and N ′′

k will in general be disjoint.
In fact, the set of points with consistent factorizations is not necessarily connected in
G. A simple counterexample is given on the l.h.s. of Figure 8.

Definition 21. Two points x and y are directly prime-factorization consistent, x∼̂y,
if there is subspace Y =

∏

k Yk of X such that x, y ∈ int(Y ) and the factors Yk are not
locally factorizable at x and y.

In this case Yk is also prime provided xk and yk do not both have a neighborhood
consisting of a single point.

Definition 20 can be recast in graph-theoretical language:

Lemma 22. Let G be a graph x, y ∈ VG with local (not necessarily prime) factorizations
N(x) = � ∏Nx

k and N(y) = � ∏Ny
k , respectively. Then these local factorizations are

consistent if there is an induced subgraph H b G that has a (not necessarily prime)
factorization H = � ∏Hk such that

(1) x and y are interior points of H;
(2) for all k holds Nx

k = N(x) ⇓ Hk and Ny
k = N(y) ⇓ Hk (with a suitable numbering

of the local factors at x and y).

We write Nx
k �̂Ny

k �̂Hk for the corresponding factors.

Furthermore, x and y are factorization consistent if Nx
k and Ny

k are prime for all k.
The relations �̂ and ∼̂ are obviously reflexive (x∼̂x for all x) and symmetric. They

are not transitive however, as the r.h.s. example in Figure 8 shows. Their transitive
closures ∼ and � are therefore equivalence relations.
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Figure 8. L.h.s.: The induced subgraph highlighted by thick edges is factorizeable (H =
P1 � P2). Its interior vertices are indicated by green squares. In these four points the local
factors (P1 �P1) are induced subgraphs of the factors of H . Hence their local factorizations are
mutually consistent. However, G is not locally factorizable in the two points shown as black
circles (because of the spikes attached to them).
R.h.s.: The vertex in red has consistent factorizations in common with both the green vertices
(mediated by the vertical rectangle) and the yellow and violet vertices (mediated by the hor-
izontal rectangle). The green and the yellow vertices are factorization-consistent (via the the
red vertex as an intermediate) even though they are not directly related by the factorization of
any subgraph.

We will say that two vertices are prime factorization-consistent if x ∼ y, i.e., if there is
a sequence of vertices x = x0, x1, . . . , xk−1, xk = y such that xj−1 and xj have consistent
factorizations for all 1 ≤ j ≤ k. By definition, the factorization-consistent points form
an equivalence relation. If there are locally non-factorizable points in G, these will
form a separate class of this equivalence relation (only a single factor, trivially mediated
through the graph G itself). A necessary condition for a class of factorization-consistent
vertices with non-trivial factorization to be connected is that the induced subgraphs H
in definition of the relation ∼̂ has a connected set of interior points.

Similarly, local factors Nx
k and N z

l are equivalent, Nx
k � N z

l if there is a sequence
of points x = y0, y1, . . . , ym = z with local factors N yi

ji
such that N

yi−1

ji−1
�̂Nyi

ji
. Note

that if Nx
k � N z

k for k = 1, . . . , m then � ∏
j∈J Nx

j � � ∏
j∈J N z

j for all index sets

J ⊆ {1, . . . , m}. In other words, if x and z have some consistent factors, than any
product of a number of these factors is also consistent.

Now consider a factor F of a local factorization of the space at some point x ∈ X. Let
H[F ] be the collection of induced subgraphs of X that have a factor F ′ � F consistent
with F . Clearly, H[F ] is a partial covering of G. The set GF =

⋃

H[F ] of points covered
can be interpreted as the maximal subset of G on which we can speak of the identity
of the factor F . Clearly, there is a local factor Nz � F consistent with F at a point
z if and only if z ∈ int(GF ). Hence int(GF ) is the set of all phenotypes for which the
character F is defined.

6. Interpretations

The starting point of the current study is Lewontin’s idea of quasi-independence
(Lewontin, 1978) as a bases for the development of a character concept. A mathe-
matical interpretation of this idea was given before (Stadler et al., 2001) with the notion
of structural decomposability of the phenotype space. Characters are identified with
factors or dimensions of a region of the phenotype space. We will call the so identified
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characters “variational characters.” Then we asked what one can say about the identity
of characters in two species or organisms, also known as homology, making no other
assumption than the existence of quasi-independence. An intuitive summary of the
main results has been given in section 3. Here we discuss the biological interpretation
and some of the conceptual implications of these results. In particular we will focus on
homology, evolutionary novelties and the stability of body plans.

6.1. Identity of Quasi-Independent Characters and Homology. The original
definition of homology by Owen identified two characters as homologous if they are
“the same” in some unspecified way. The meaning of “sameness” was implicitly defined
through the morphological criteria used to separate between superficial and essential
similarity, i.e. between analogy and homology. This notion was re-interpreted by Dar-
win with reference to a common ancestor. In the Darwinian tradition homologues are
two characters in different species that correspond to the same character in a common
ancestor of these species. Homology is thus identified with continuity of descent of an
entity, which does not tend to change its identity during the process of descent with mod-
ifications. This homology concept can be called “historical” since it is defined solely on
the basis of historical, genealogical relationships, but it does not clarify what character
identity means (Wagner, 1989b,a).

In fact, the historical homology concept also presupposes a notion of sameness, just
as Owen’s does, otherwise the phrase “the same character in a common ancestor” would
not be defined. An attempt to clarify the notion of sameness that underlies, both Owen’s
as well as Darwin’s notions of homology, is the so-called biological homology concept
(Wagner, 1994). It is based on the idea that homologues are clusters of observable
attributes that remain stable during adaptive evolution by natural selection. They
are thus thought of as causally homeostatic parts of the body which thus retain their
identity during (most) evolutionary transformations (Wagner, 1999). This notion is, in
its definition, independent of continuity of descent and thus has an unclear relationship
to the historical homology concept. Here we argue that both homology concepts and
their relationship can be accommodated in a theory of character identity based on quasi-
independence. In section 5.5 it is shown that identity of variational characters is well
defined and determines a class of (in most cases) variationally connected phenotypes
sharing this factor. This means that phenotypes which share a certain factor/character
can evolve into each other without going through states where the character is not
defined. The notion of character identity based on quasi-independence is thus fully
consistent with the historical homology concept.

This consistence, however, takes an interesting form. It shows that continuity of de-
scent is sufficient to establish character identity. Hence descent from a common ancestor
is sufficient to establish character identity, as implied in the historical homology concept.
But continuity of descent is not necessary for character identity. There is no intrinsic
reason, although may be unlikely, why two lineages could not independently evolve phe-
notypes which have the same variational character. Nothing in the theory of phenotype
spaces would forbid that. One can thus say that the historical homology concept is an
appropriate criterion of homology but may be deficient as a definition of homology. This



A Mathematical Theory of Characters 23

potential deficiency is the same that causes the ambiguity with respect to the meaning of
parallel evolution. Parallel evolution is the independent derivation of the same character
from an ancestral phenotype (Futuyma, 1998). Can a character which is physically and
genetically the same but arose independently be something different? This is a matter
of definition, but a strict adherence to the definition of the historical homology concept
may lead to biologically meaningless distinctions among different instances of the same
biological character.

The relationship between variational characters and the biological homology concept is
less obvious. The biological homology concept directly refers to the physical realization
of the character and its variational properties, i.e. common developmental constraints. In
contrast, the variational character concept is entirely abstract from what phenotypes and
characters physically are. It is only based on the topological relationships of phenotypes
defined by the variational mechanisms that transform phenotypes (say the underlying
genotypes) by mutation and recombination. Variational characters are thus defined as
statements about the symmetries of phenotype space and make no explicit reference
to a description of the phenotypes themselves. The connection between variational
characters and biological homologues, however, is provided through the fact that every
set of orthogonal factors implies a set of orthogonal partitions, as shown in Stadler et al.
(2001).

A partition P of a set A is a set of equivalence classes P ∈ P, P ⊆ A, which col-
lectively contain all the elements in this set. This means that each character state of
a variational character can be understood as an equivalence class consisting of all the
phenotypes which have the same state of the variational character but which may be
different in other respects. In that way an abstract factor can be translated into a clus-
ter of phenotypic and genotypic attributes, which is what we usually think of when we
speak of an organismal character, for instance a bone with a certain shape and location
in the body. Regardless of whether a character is defined as an attribute cluster in the
sense of the biological homology concept, or as a variational character based on quasi-
independence, these two notions are translatable into each other, due to the connection
between factors and partitions. In either way a character can be understood as a hy-
pothesis about the existence of homeostatic mechanisms that maintain the identity of
a part of the phenotype and which makes them thus combinable with different contexts
of other characters. We conclude that quasi-independence is a strong enough concept to
explain and accommodate both the historical as well as the biological homology concept.
Nothing else is needed but quasi-independence to clarify these concepts.

6.2. Evolutionary Novelties. The novelty concept is about as elusive as the homol-
ogy concept, and closely connected to the notion of character identity (Nitecky, 1990).
A novelty can be defined as any character that arises in evolution which is neither ho-
mologous to a character in an ancestor or serially homologous to any other part of the
organism (Müller and Wagner, 1991). In the language of phenotype space topology as
developed in (Stadler et al., 2001) and this paper, the evolution of a novelty is equivalent
to evolution from one part of the phenotype space into another part that has a different
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regional factorization. In other words, the origin of a novelty is the appearance of a vari-
ational character that is not defined in the ancestral lineage. Formal phenotype spaces
and their factorizations provides a mathematical language in which the process of the
evolutionary innovation can be described. This is a major advantage over other, estab-
lished mathematical theories of phenotypic evolution, like quantitative genetics, where
the set of characters is assumed to be fixed. In these models the origin of novelties is
structurally impossible to model. In fact the search for a language that can accommo-
date evolutionary novelties was a major motivation for developing the present theory.
The result most relevant to the evolution of novelties is theorem 19, which determines
the minimal dimensionality of phenotypes that belong to the overlap between two areas
of regional factorization, say A and B.

Any maximal part of the phenotype space, which has its own regional factorization,
can be thought of as a particular type or body plan. They consist of all the mutationally
connected phenotypes that can be decomposed onto the same set of variational char-
acters. One implicit results of Theorem 19 is that types can overlap and that overlap
among body plans is in fact natural in the way factorization works. Types or body plans
defined on the basis of variational characters are thus not mutually exclusive classes but
can to various degrees be connected to each other. In this context there can be tran-
sitional forms that connect two different body plans. Hence a variational body plan
concept is, in contrast to a typological body plan concept, fully compatible with evo-
lutionary theory. No hopeful monsters are necessary (although logically possible, see
below) to evolve a new body plan and no logical contradictions exist between evolution
and body plans as those suggested by Medawar and Medawar (1983, p.281-282). There
are however some topological restrictions that arise in the transition between different
body plans. We will explore those below.

Theorem 19 tells us that if there is a phenotype x which belongs to the overlap of
types A and B its dimensionality has to be larger than the sum of the dimensionalities
of A and B, minus the number of factors that A and B share, φ(A, B)

dim N(x) ≥ dim A + dim B − φ(A, B)

The reason simply is that any phenotype that belongs both to A as well as B has to be
compatible with both regional factorizations. Any factor of A and any factor of B has
to correspond to one or a combination of local factors of N(x). Now let us consider a
few scenarios to see whether this result makes intuitive sense.

Let us consider cases where evolution proceeds from A to B and B is the same as A
except that it has one factor more that is not present in A, i.e. a single novelty. Then
φ(A, B) = dim A and the local dimensionality of x only has to be at least as high as B:
dim N(x) ≥ dim B. This is a simple accretion of a novelty. An analogous argument can
be made for the loss of a character, dim B = dim A − 1 and dim B = φ(A, B).

More interesting is the case where the two types differ by more than one variational
character and do not simply differ by accretion of characters on top of those of A,
φ(A, B) < min{dim A, dim B}. Two situations need to be distinguished: 1) the two
types do not directly overlap, and 2) the two types overlap and thus share transitional
phenotypes that belong to either. In the first case the theory makes not predictions
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except that there have to be other types D, E, F , etc. that form a chain of overlapping
types, or some arbitrary non-decomposable forms. In the second case, however, topolog-
ical constraints mandate that the transitional form is strictly more complex (has more
variational characters) than either of the two types. This is easily seen by rewriting
dim A = φ(A, B) + nA, where nA is the number of unique variational characters of A
not shared with B, and dim B = φ(A, B) + nB, analogously. From this it immediately
follows that

dim N(x) ≥ dim B + nA (29)

or dim N(x) > max{dim A, dim B} by assumption. If there are transitional forms be-
tween A and B (phenotypes which belong to both A and B) have to represent a com-
plexity hump since they need to have all the variational characters of either type. Of
course these new characters do not need to appear all at once, since any phenotype that
has acquired some of the characters of B but not all of them does not strictly belong to
B and thus is not in the overlap of A and B (both of them open sets).

Although not strictly necessary, from a mathematical point of view, transitional forms
which possess a combination of plesiomorphic and apomorphic characters is a natural
consequence of topological constraints on local factor decompositions. The only con-
straint is that there has to be at least one form that has all the characters of the
ancestor and the derived body plan. Otherwise the evolution has to go through forms
that belong neither to type A nor to type B.

Next we want to ask whether it is mathematically possible to have a direct evolutionary
transition between two types but avoids the complexity hump, i.e. are there cases not
covered by theorem 19. We will proceed by asking what follows from a violation of
the dimensionality equation for N(x). It is easy to show that dim N(x) < dim A +
dim B−φ(A, B) implies that x will not an element of int(A) or not an element of int(B),
or both. This condition can be satisfied if x is neither internal to A nor to B, but
then there would be no direct transition between them either. The other possibility
to satisfy this condition amounts to the definition of a hopeful monster. We translate
the notion of a hopeful monster as a phenotypes that can be reached from the ancestor
A by a single step but is not part of A, x /∈ int(A), but belongs to B, x ∈ int(B).
Whether this is possible depends on the kind of space the phenotype space represents.
If A and B are open sets in a topological space, this is not possible, because it is true
that if int(A) ∩ int(B) = ∅, then also int(A) ∩ cl(B) = ∅. In pretopological spaces and
neighborhood spaces, however, a hopeful monster is possible in principle, though may be
biologically not likely. If one wants to avoid the complexity hump in a direct transition
between two types then 1) the transition has to occur in a pretopological space and
2) has to involve a hopeful monster, i.e. a descendant of A but not a representative of
the type A and already a fully fledged member of type B. Hopeful monsters are (pre-)
topologically possible but this theory can not speak to the biological likelihood of such
a transition.

6.3. The Stability of Body Plans. In the previous section a body plan or type was
conceptualized as a part of the phenotype space with its own regional factorization,
or set of variational characters. Types, however, are not only characterized by their
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own set of characters but often, if not always, display remarkable evolutionary stability.
This stability can have multiple causes, from developmental constraints to functional
integration. Here we propose two additional factors that may contribute to the stability
of body plans. The first has to do with the topological properties of factorizable spaces,
the second with the evolvability of modular body plans.

In section 5.3, eqns. (22) and (23) give an equation about the vertex degree of fac-
torizable graphs. Note that graphs are a model of finite pretopological spaces, where
each vertex represents a phenotype and each edge a possible genetic transformation of
the phenotype. The vertex degree is the number of edges that end or originate at a
particular vertex. A graph is called vertex regular, if each vertex has the same number
of edges, and irregular if they do not.

The vertex degree is an interesting property of graphs for the following reason. If one
considers a graph as a ”map” of possible paths to go, as we do with phenotype spaces,
then the vertex degree tells us how often a vertex is visited during a random walk on the
graph. In other words the vertex degree is proportional (in undirected graphs) to the
probability that a random walk will be at the given vertex. Of course the probability
will also depend on the degree of the other vertices in the graph, but the vertices with
the higher degree will be visited more often than those with lower vertex degrees.

If a graph, that represents a configuration space for a genetic operator, has vertices
with a much higher degree than others there will be an ”intrinsic (entropic) pull” to-
wards the states represented with higher vertex degree. This pull is independent and
can be opposed to any evolutionary force caused by natural selection. In contrast, in
configuration spaces that are vertex regular, no such preferred directions exist. Exam-
ples are the Hamming graph representing nucleotide sequences with constant length and
base substitutions as variational operator. On a vertex regular configuration space any
directionality has to come from natural selection rather than from intrinsic tendencies.
With this in mind let us now consider product spaces.

Equation 22 tells us that if each factor is vertex regular, so will be the product space
obtained from these factors. If, however, the factors are vertex irregular, this irregularity
will be transmitted to the product space and even amplified. If each factor has mildly
preferred states, i.e. vertices with somewhat higher vertex degree, these preferences
translate into a cluster of highly preferred states in the product space. This is because
the vertex degree of the vertex in the product space is a multilinear function of the
vertex degrees of all of the vertices in the factors. In other words, a product space
generically will contain one or more clusters of highly preferred states. Furthermore, in
particular in undirected graphs, these island of preferred states will be in the interior
of the factorizable region. This means that the preferred states in a product space will
be the ones that are not poised to leave the factorizable region. In other words, the
preferred states make it less likely to realize a mutation that leaves the type. Hence
there is a generic tendency for types to evolve states within the same type and thus
preserves the type. This factor is entirely statistical and adds to the other mechanistic
reasons for the stability of types, like functional and developmental integration.
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Note that this suggestion implies that irregular product spaces are predicted to be
both, highly evolvable among states within the type as well as stable against transfor-
mations that affect the type itself. Factorizability can also been seen as a condition of
modularity, i.e., the existence of independently changeable parts of the organism. It
is widely thought that if modularity matches the different functions the organism has
to perform, it can increase evolvability. Hence evolution within a type is likely to be
facilitated, while phenotypes outside factorizable regions are likely to be less evolvable.
Hence there are two reasons why adapative evolution is predicted to occur preferntially
within the confines of a given type than leading to another type or any other state out-
side the focal type. There is an entropic pull to the interior of the part of the phenotype
space representing the type. In addition there is a higher chance to increase fitness by
evolution within a type (due to modularity) than with mutational steps leaving regions
of high modularity. Both of these factors make it more likely that adaptive challenges
will be met by phenotypic states within a given type than leading to the evolution of a
new type.
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M. Changat, S. Klavžar, and H. M. Mulder. The all-path transit function of a graph.

Czech. Math. J., 51:439–448, 2001.
J. Cupal, S. Kopp, and P. F. Stadler. RNA shape space topology. Artificial Life, 6:3–23,

2000.
M. M. Day. Convergence, closure, and neighborhoods. Duke Math. J., 11:181–199, 1944.
N. Eldredge and S. J. Gould. no title. In T. J. M. Schopf, editor, Models in Paleobiology,

pages 82–115. Freeman, San Francisco, 1972.
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