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Abstract. We propose a model for the quark-antiquark interaction in Minkowski space

using the Covariant Spectator Theory. We show that with an equal-weighted scalar-

pseudoscalar structure for the confining part of our interaction kernel the axial-vector

Ward-Takahashi identity is preserved and our model complies with the Adler-zero con-

straint for π-π-scattering imposed by chiral symmetry.

1 Introduction

As the lightest quark-antiquark bound state the pion is of particular importance for our understand-

ing of confinement and spontaneous chiral-symmetry breaking (SχSB). It emerges non-perturbatively

from the strong interaction and it is at the same time identified with the Goldstone boson associated

with SχSB. Various modern approaches have addressed the non-perturbative dynamics underlying

such hadronic systems. For instance, lattice-QCD simulations [1, 2], light-front quantum field the-

ory [3, 4], as well as models based on the Dyson-Schwinger–Bethe-Salpeter (DSBS) approach and

the mass gap equation [5–10] have significantly contributed to an understanding of a wide range of

hadronic phenomena. The framework we use is the Covariant Spectator Theory (CST) [11–16] —

another modern field-theoretic approach that implements SχSB through the famous Nambu–Jona-

Lasinio mechanism, similarly to DSBS. Whereas the latter is usually treated in a Euclidean formu-

lation, CST is established in Minkowski space, an advantage for instance when computing form fac-

tors in the timelike region. Another distinct feature of CST is its capability of accommodating a

Lorentz-scalar confining interaction kernel without destroying chiral symmetry, which is of particular

importance in view of the approaches [17–19] suggesting the existence of a scalar component for the

quark-antiquark interaction. In the present work we study to what extent such confining forces can

be made consistent with SχSB. Our strategy is to start from the most general Lorentz structure for

the interaction kernel and then determine the constraints imposed by chiral symmetry, similarly to

what has been done in Ref. [20] for a different formalism. It turns out that a CST model with scalar

confinement, together with an equal-weighted pseudoscalar counterpart satisfies the SχSB condition

of the Adler consistency zero [21] in π-π scattering in the chiral limit.
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2 Axial-vector Ward-Takahashi identity

Explicit and spontaneous chiral-symmetry breaking is expressed in quantum field theory through

the axial-vector Ward-Takahashi identity (AV-WTI) involving the dressed quark propagators and the

dressed axial-vector and pseudoscalar vertices. When dealing with strong quark form factors accord-

ing to Gross and Riska [22–24] the AV-WTI reads

PμΓ
5μ
R

(p′, p) + 2m0Γ
5
R(p′, p) = S̃ −1(p′)γ5 + γ5S̃ −1(p) , (1)

where Γ
5μ
R

(p′, p) and Γ5
R
(p′, p) are the dressed axial-vector and pseudoscalar vertices, respectively,

m0 is the bare quark mass, p and p′ are the incoming and outgoing quark momenta, respectively,

P = p′ − p is the momentum flowing into the vertex, and S̃ (p) is the dressed quark propagator as

introduced in Ref. [25]. The combination on the LHS of Eq. (1) is sometimes called the dressed axial

vertex ΓA
R
(p′, p), which is the solution of an inhomogeneous CST Bethe-Salpeter equation (CST-BSE),

ΓA
R(p′, p) = γA

R(p′, p) + i

∫
k0

VR(p − k)S̃ (k′)ΓA
R(k′, k)S̃ (k) , (2)

where γA
R

(p′, p) is the bare axial vertex,VR(p−k) is the covariant qq̄ interaction kernel depending only

on the four-momentum transfer p − k = p′ − k′, and “k0” indicates the charge-conjugation invariant

CST prescription for performing the k0 contour integration [15]. The most general structure of the

CST generalization of the linear-confining potential, together with a vector–axial-vector remainder, is

given by

VR(p − k) = VLR(p − k)
[
λS (1 ⊗ 1) + λP(γ5 ⊗ γ5) + λV (γμ ⊗ γμ) + λA(γ5γμ ⊗ γ5γμ)

+
λT

2
(σμν ⊗ σμν)

]
+ VCR(p − k)

[
κV (γμ ⊗ γμ) + κA(γ5γμ ⊗ γ5γμ)

]
, (3)

where VLR and VCR are the Lorentz-invariant momentum-dependent parts of the linear-confining and

remaining kernels, respectively. The corresponding weight parameters λi and κi [with i = S (scalar),

P (pseudoscalar), V (vector), A (axial-vector), and T (tensor)] are arbitrary constants. Further, VLR

satisfies the CST generalization of the non-relativistic condition VL(r = 0) = 0, given by∫
d3k

Ek

VLR(p ± k̂) = 0 , (4)

where Ek =

√
m2 + 	k2, k̂ = (Ek,	k), and m is the dressed quark mass. For this kernel with λS = λP

it has been shown [25] that the AV-WTI (1) together with the CST-BSE (2) implies that S̃ (p) is the

solution of the CST-Dyson Equation (CST-DE),

S̃ −1(p) = S̃ −1
0 (p) − i

∫
k0

VR(p − k)S̃ (k) , (5)

where S̃ 0 is the bare quark propagator, which obeys an AV-WTI involving γA
R

(p′, p). It turns out that

γA
R

(p′, p) vanishes in the chiral limit of vanishing bare quark mass, m0 → 0, and vanishing vertex

momentum, P → 0. In this limit, the CST-BSE (2) becomes homogeneous and identical to the zero-

mass pion CST equation for the pion vertex function in the chiral limit, Γπ
Rχ, which implies the relation

ΓA
Rχ(p, p) ∝ ΓπRχ(p, p) . (6)

Because of the condition (4), and imposing equal weights to the scalar and pseudoscalar terms in the

interaction kernel only VCR contributes to the chiral-limit pion equation and to the scalar part of the

CST-DE (5). This corresponds to dynamical quark mass generation. Therefore, the linear-confinement

part VLR that includes the scalar, pseudoscalar and tensor structures in our model, entirely decouples

from these equations [13].
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Figure 1. The O contributions to π-π scattering. The orange boxes denote the unamputated quark-quark scattering

amplitudes.
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Figure 2. The TO term. A purple blob denotes a γ5 and I(P) is a non-vanishing normalization integral.

3 π-π scattering and Adler zero

Consistency with chiral symmetry implies the vanishing of the π-π scattering amplitude in the chiral

limit [21]. This property, known as the Adler zero, is due to remarkable cancellations, which occur

between different scattering diagrams that go beyond the (lowest-order) impulse approximation. In

these diagrams intermediate-state interactions to all orders are included through the complete quark-

quark ladder sum [26, 27], which involves nine different types of contributions. The proof of the

cancellations between these contributions is rather lengthy. To illustrate the technical procedure we

discuss here only the diagrams shown in Fig. 1. The same treatment applies to the other diagrams that

have to be taken into account. The full proof is given in detail in Ref. [25]. In order to show that the

sum of these diagrams vanishes in the chiral limit, one inserts an additional ladder sum at one pion

vertex by using the spectral decomposition of the ladder sum. Then, by Eq. (6), Γπ
Rχ is replaced by ΓA

Rχ,

allowing the application of the AV-WTI (1) between two ladder sums. For TO this results in 4 terms

as depicted in Fig. 2. Because the sum T ′
O3

+ T ′′
O3

is proportional to the anticommutator {VR, γ
5}, all

vector and axial-vector contributions cancel. The scalar, pseudoscalar, and tensor structures from the
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confining potential integrate to zero in the chiral limit because of the decoupling property discussed in

the previous section. The TO2 term vanishes as consequence of the fact that the pion does not couple

to the scalar channel. Finally, the TO1 term, together with S O cancel exactly the DO term by applying

again the AV-WTI.
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