431 research outputs found

    Performance, physiological, and oculometer evaluation of VTOL landing displays

    Get PDF
    A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels

    Spatially inhomogeneous acceleration of electrons in solar flares

    Get PDF
    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.Comment: 10 pages, submitted to Astronomy and Astrophysics Journa

    Equations of state and stability of MgSiO3_3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    Get PDF
    We have performed quantum Monte Carlo (QMC) simulations and density functional theory (DFT) calculations to study the equations of state of MgSiO3_3 perovskite (Pv) and post-perovskite (PPv), up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground state energies were derived using QMC and the temperature dependent Helmholtz free energies were calculated within the quasi-harmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO3_3 agree well with experiments, and better than those from generalized gradient approximation (GGA) calculations. The Pv-PPv phase boundary calculated from our QMC equations of states is also consistent with experiments, and better than previous LDA calculations. We discuss the implications for double crossing of the Pv-PPv boundary in the Earth

    Boron deficiencies for alfalfa in Ohio

    Get PDF

    Comparison of radiative energy flows in observational datasets and climate modeling

    No full text
    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10 W m-2 each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30 W m-2 over trade wind cumulus regions, yet smaller CRE by about -30 W m-2 over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15 W m-2 smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference. © 2016 American Meteorological Society

    The Formation of Kappa-Distribution Accelerated Electron Populations in Solar Flares

    Full text link
    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a "wave front" propagating forwards in velocity space, so that electrons of higher energy are accelerated later; the acceleration time scales with energy according to τacc∼E3/2\tau_{\rm acc} \sim E^{3/2}. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the "leaky-box" approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.Comment: accepted to Astrophysical Journa

    Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale

    Get PDF
    International audienceWe used a spectral radiative transfer model to compute the direct radiative effect (DRE) of natural plus anthropogenic aerosols in the solar near-infrared (IR), between 0.85?10 ?m, namely, their effect on the outgoing near-IR radiation at the top of atmosphere (TOA, ?FTOA), on the atmospheric absorption of near-IR radiation (?Fatmab) and on the surface downward and absorbed near-IR radiation (?Fsurf, and ?Fsurfnet, respectively). The computations were performed on a global scale (over land and ocean) under all-sky conditions, using detailed spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS) supplemented by realistic data for the rest of surface and atmospheric parameters. The computed aerosol DRE, averaged over the 12-year period 1984?1995 for January and July, shows that on a global mean basis aerosols produce a planetary cooling by increasing the scattered near-IR radiation back to space by 0.48 W m?2, they warm the atmosphere by 0.37 W m?2 and cool the surface by decreasing the downward and absorbed near-IR radiation at surface by 1.03 and 0.85 W m?2, respectively. The magnitude of the near-IR aerosol DRE is smaller than that of the combined ultraviolet (UV) and visible DRE, but it is still energetically important, since it contributes to the total shortwave (SW) DRE by 22?31%. The aerosol-produced near-IR surface cooling combined with the atmospheric warming, may affect the thermal dynamics of the Earth-atmosphere system, by increasing the atmospheric stability, decreasing thus cloud formation, and precipitation, especially over desertification threatened regions such as the Mediterranean basin. This, together with the fact that the sign of near-IR aerosol DRE is sometimes opposite to that of UV-visible DRE, demonstrates the importance of performing detailed spectral computations to provide estimates of the climatic role of aerosols for the Earth-atmosphere system. This was demonstrated by sensitivity tests revealing very large differences (up to 300%) between aerosol DREs computed using detailed spectral and spectrally-averaged aerosol optical properties. Our model results indicate thus that the aerosol direct radiative effect on the near-IR radiation is very sensitive to the treatment of the spectral dependence of aerosol optical properties and solar radiation

    The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Get PDF
    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam

    The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS)

    Get PDF
    International audienceA global estimate of the seasonal direct radiative effect (DRE) of natural plus anthropogenic aerosols on solar radiation under all-sky conditions is obtained by combining satellite measurements and reanalysis data with a spectral radiative transfer model and spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS). The estimates are obtained with detailed spectral model computations separating the ultraviolet (UV), visible and near-infrared wavelengths. The global distribution of spectral aerosol optical properties was taken from GADS whereas data for clouds, water vapour, ozone, carbon dioxide, methane and surface albedo were taken from various satellite and reanalysis datasets. Using these aerosol properties and other related variables, we generate climatological (for the 12-year period 1984?1995) monthly mean aerosol DREs. The global annual mean DRE on the outgoing SW radiation at the top of atmosphere (TOA, ?FTOA) is ?1.62 W m?2 (with a range of ?15 to 10 W m?2, negative values corresponding to planetary cooling), the effect on the atmospheric absorption of SW radiation (?Fatmab) is 1.6 W m?2 (values up to 35 W m?2, corresponding to atmospheric warming), and the effect on the surface downward and absorbed SW radiation (?Fsurf, and ?Fsurfnet, respectively) is ?3.93 and ?3.22 W m?2 (values up to ?45 and ?35 W m?2, respectively, corresponding to surface cooling). According to our results, aerosols decrease/increase the planetary albedo by ?3 to 13% at the local scale, whereas on planetary scale the result is an increase of 1.5%. Aerosols can warm locally the atmosphere by up to 0.98 K day?1, whereas they can cool the Earth's surface by up to ?2.9 K day?1. Both these effects, which can significantly modify atmospheric dynamics and the hydrological cycle, can produce significant planetary cooling on a regional scale, although planetary warming can arise over highly reflecting surfaces. The aerosol DRE at the Earth's surface compared to TOA can be up to 15 times larger at the local scale. The largest aerosol DRE takes place in the northern hemisphere both at the surface and the atmosphere, arising mainly at ultraviolet and visible wavelengths
    • …
    corecore