164 research outputs found
Molecular footprints of the Holocene retreat of dwarf birch in Britain
© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Hybridization and hybrid speciation under global change
An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization ‘experiments’, allowing us to peer into the birth and death of evolutionary lineages
The long and the short of it: long-styled florets are associated with higher outcrossing rate in Senecio vulgaris and result from delayed selfpollen germination
The research reported in this article was funded in part by the Natural Environment Research Council under grants: GR3/6203A - Male competition and outcrossing rate in a hermaphrodite plant. GR9/1782A – Genomic analysis of wild hybrid derivatives of Senecio squalidus x S. vulgaris using in situ hybridization.Background: It has been reported that some plants of the self-compatible species, Senecio vulgaris, produce capitula containing long-styled florets which fail to set seed when left to self-pollinate, although readily set seed when self-pollinated by hand. Aims: To determine if production of long-styled florets is associated with higher outcrossing rate in S. vulgaris, and whether long-styles occur in non-pollinated florets, whereas short-styles are present in self-pollinated florets. Methods: The frequency of long-styled florets was compared in the radiate and non-radiate variants of S. vulgaris, known to exhibit higher and lower outcrossing rates, respectively. In addition, style length was compared in emasculated florets that were either self-pollinated or left non-pollinated. Results: Long-styled florets were more frequent in the higher outcrossing radiate variant. Following emasculation, long styles occurred in non-pollinated florets, while short styles were present in self-pollinated florets. The two variants did not differ in style length within the non-pollinated or within the self-pollinated floret categories. Conclusions: A high frequency of long-styled florets is associated with higher outcrossing rate in S. vulgaris and results from delayed self-pollination and pollen germination on stigmas.Publisher PDFPublisher PDFPeer reviewe
A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland
The vascular flora of Britain and Ireland is among the most extensively studied in the world, but the current knowledge base is fragmentary, with taxonomic, ecological and genetic information scattered across different resources. Here we present the first comprehensive data repository of native and alien species optimized for fast and easy online access for ecological, evolutionary and conservation analyses. The inventory is based on the most recent reference flora of Britain and Ireland, with taxon names linked to unique Kew taxon identifiers and DNA barcode data. Our data resource for 3,227 species and 26 traits includes existing and unpublished genome sizes, chromosome numbers and life strategy and life-form assessments, along with existing data on functional traits, species distribution metrics, hybrid propensity, associated biomes, realized niche description, native status and geographic origin of alien species. This resource will facilitate both fundamental and applied research and enhance our understanding of the flora’s composition and temporal changes to inform conservation efforts in the face of ongoing climate change and biodiversity loss
Hybridization and speciation in angiosperms: a role for pollinator shifts?
The majority of convincingly documented cases of hybridization in angiosperms has involved genetic introgression between the parental species or formation of a hybrid species with increased ploidy; however, homoploid (diploid) hybridization may be just as common. Recent studies, including one in BMC Evolutionary Biology, show that pollinator shifts can play a role in both mechanisms of hybrid speciation
Quantifying soil hydrology to explain the development of vegetation at an ex-arable wetland restoration site
Wetland restoration frequently sets well-defined vegetation targets, but where restoration occurs on highly degraded land such targets are not practical and setting looser targets may be more appropriate. Where this more ‘open-ended’ approach to restoration is adopted, surveillance methods that can track developing wetland habitats need to be established. Water regime and soil structure are known to influence the distribution and composition of developing wetland vegetation, and may be quantified using Sum Exceedence Values (SEV), calculated using the position of the water table and knowledge of soil stress thresholds. Use of SEV to explain patterns in naturally colonizing vegetation on restored, ex-arable land was tested at Wicken Fen (UK). Analysis of values from ten locations showed that soil structure was highly heterogeneous. Five locations had shallow aeration stress thresholds and so had the potential to support diverse wetland assemblages. Deep aeration stress thresholds at other locations precluded the establishment of a diverse wetland flora, but identified areas where species-poor wetland assemblages may develop. SEV was found to be a useful tool for the surveillance of sites where restoration targets are not specified in detail at the outset and may help predict likely habitat outcomes at sites using an open-ended restoration approach
Species by Environment Interactions Affect Pyrrolizidine Alkaloid Expression in Senecio jacobaea, Senecio aquaticus, and Their Hybrids
We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection
Albumin-Associated Lipids Regulate Human Embryonic Stem Cell Self-Renewal
BACKGROUND: Although human embryonic stem cells (hESCs) hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems
- …