11 research outputs found

    Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents

    Get PDF
    Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesity are summarized, with particular focus on mitochondrial function. In addition, we discuss how a functionally mitochondrial-targeted compound, the modified fatty acid tetradecylthioacetic acid (TTA), can influence mitochondrial function and decrease the size of specific fat depots

    Tissue-Specific Effects of Bariatric Surgery Including Mitochondrial Function

    Get PDF
    A better understanding of the molecular links between obesity and disease is potentially of great benefit for society. In this paper we discuss proposed mechanisms whereby bariatric surgery improves metabolic health, including acute effects on glucose metabolism and long-term effects on metabolic tissues (adipose tissue, skeletal muscle, and liver) and mitochondrial function. More short-term randomized controlled trials should be performed that include simultaneous measurement of metabolic parameters in different tissues, such as tissue gene expression, protein profile, and lipid content. By directly comparing different surgical procedures using a wider array of metabolic parameters, one may further unravel the mechanisms of aberrant metabolic regulation in obesity and related disorders

    Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor pRb plays a key role regulating cell cycle arrest, and disturbances in the <it>RB1 </it>gene have been reported in different cancer forms. However, the literature reports contradictory findings with respect to a pro - versus anti - apoptotic role of pRb, and the consequence of alterations in <it>RB1 </it>to chemotherapy sensitivity remains unclear. This study is part of a project investigating alterations in pivotal genes as predictive factors to chemotherapy sensitivity in breast cancer.</p> <p>Results</p> <p>Analyzing 73 locally advanced (stage III) breast cancers, we identified two somatic and one germline single nucleotide changes, each leading to amino acid substitution in the pRb protein (Leu607Ile, Arg698Trp, and Arg621Cys, respectively). This is the first study reporting point mutations affecting <it>RB1 </it>in breast cancer tissue. In addition, MLPA analysis revealed two large multiexon deletions (exons 13 to 27 and exons 21 to 23) with the exons 21-23 deletion occurring in the tumor also harboring the Leu607Ile mutation. Interestingly, Leu607Ile and Arg621Cys point mutations both localize to the spacer region of the pRb protein, a region previously shown to harbor somatic and germline mutations. Multiple sequence alignment across species indicates the spacer to be evolutionary conserved. All three <it>RB1 </it>point mutations encoded nuclear proteins with impaired ability to induce apoptosis compared to wild-type pRb <it>in vitro</it>. Notably, three out of four tumors harboring <it>RB1 </it>mutations displayed primary resistance to treatment with either 5-FU/mitomycin or doxorubicin while only 14 out of 64 tumors without mutations were resistant (p = 0.046).</p> <p>Conclusions</p> <p>Although rare, our findings suggest <it>RB1 </it>mutations to be of pathological importance potentially affecting sensitivity to mitomycin/anthracycline treatment in breast cancer.</p

    Concomitant inactivation of the p53- and pRB- functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo

    Get PDF
    Chemoresistance is the main obstacle to cancer cure. Contrasting studies focusing on single gene mutations, we hypothesize chemoresistance to be due to inactivation of key pathways affecting cellular mechanisms such as apoptosis, senescence, or DNA repair. In support of this hypothesis, we have previously shown inactivation of either TP53 or its key activators CHK2 and ATM to predict resistance to DNA damaging drugs in breast cancer better than TP53 mutations alone. Further, we hypothesized that redundant pathway(s) may compensate for loss of p53-pathway signaling and that these are inactivated as well in resistant tumour cells. Here, we assessed genetic alterations of the retinoblastoma gene (RB1) and its key regulators: Cyclin D and E as well as their inhibitors p16 and p27. In an exploratory cohort of 69 patients selected from two prospective studies treated with either doxorubicin monotherapy or 5-FU and mitomycin for locally advanced breast cancers, we found defects in the pRB-pathway to be associated with therapy resistance (p-values ranging from 0.001 to 0.094, depending on the cut-off value applied to p27 expression levels). Although statistically weaker, we observed confirmatory associations in a validation cohort from another prospective study (n = 107 patients treated with neoadjuvant epirubicin monotherapy; p-values ranging from 7.0 × 10−4 to 0.001 in the combined data sets). Importantly, inactivation of the p53-and the pRB-pathways in concert predicted resistance to therapy more strongly than each of the two pathways assessed individually (exploratory cohort: p-values ranging from 3.9 × 10−6 to 7.5 × 10−3 depending on cut-off values applied to ATM and p27 mRNA expression levels). Again, similar findings were confirmed in the validation cohort, with p-values ranging from 6.0 × 10−7 to 6.5 × 10−5 in the combined data sets. Our findings strongly indicate that concomitant inactivation of the p53- and pRB- pathways predict resistance towards anthracyclines and mitomycin in breast cancer in vivo

    Concomitant inactivation of the p53- and pRB- functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo

    No full text
    Chemoresistance is the main obstacle to cancer cure. Contrasting studies focusing on single gene mutations, we hypothesize chemoresistance to be due to inactivation of key pathways affecting cellular mechanisms such as apoptosis, senescence, or DNA repair. In support of this hypothesis, we have previously shown inactivation of either TP53 or its key activators CHK2 and ATM to predict resistance to DNA damaging drugs in breast cancer better than TP53 mutations alone. Further, we hypothesized that redundant pathway(s) may compensate for loss of p53-pathway signaling and that these are inactivated as well in resistant tumour cells. Here, we assessed genetic alterations of the retinoblastoma gene (RB1) and its key regulators: Cyclin D and E as well as their inhibitors p16 and p27. In an exploratory cohort of 69 patients selected from two prospective studies treated with either doxorubicin monotherapy or 5-FU and mitomycin for locally advanced breast cancers, we found defects in the pRB-pathway to be associated with therapy resistance (p-values ranging from 0.001 to 0.094, depending on the cut-off value applied to p27 expression levels). Although statistically weaker, we observed confirmatory associations in a validation cohort from another prospective study (n = 107 patients treated with neoadjuvant epirubicin monotherapy; p-values ranging from 7.0 × 10−4 to 0.001 in the combined data sets). Importantly, inactivation of the p53-and the pRB-pathways in concert predicted resistance to therapy more strongly than each of the two pathways assessed individually (exploratory cohort: p-values ranging from 3.9 × 10−6 to 7.5 × 10−3 depending on cut-off values applied to ATM and p27 mRNA expression levels). Again, similar findings were confirmed in the validation cohort, with p-values ranging from 6.0 × 10−7 to 6.5 × 10−5 in the combined data sets. Our findings strongly indicate that concomitant inactivation of the p53- and pRB- pathways predict resistance towards anthracyclines and mitomycin in breast cancer in vivo
    corecore