42 research outputs found

    Accession Site Does Not Influence the Risk of Stroke after Diagnostic Coronary Angiography or Intervention: Results from a Large Prospective Registry

    Get PDF
    INTRODUCTION: Periprocedural stroke represents a rare but serious complication of cardiac catheterization. Pooled data from randomized trials evaluating the risk of stroke following cardiac catheterization via transradial versus transfemoral access showed no difference. On the other hand, a significant difference in stroke rates favoring transradial access was found in a recent meta-analysis of observational studies. Our aim was to determine if there is a difference in stroke risk after transradial versus transfemoral catheterization within a contemporary real-world registry. METHODS: Data from 14,139 patients included in a single-center prospective registry between 2009 and 2016 were used to determine the odds of periprocedural transient ischemic attack (TIA) and stroke for radial versus femoral catheterization via multivariate logistic regression with Firth's correction. RESULTS: A total of 10,931 patients underwent transradial and 3,208 underwent transfemoral catheterization. Periprocedural TIA/stroke occurred in 41 (0.29%) patients. Age was the only significant predictor of TIA/stroke in multivariate analysis, with each additional year representing an odds ratio (OR) = 1.09 (CI 1.05-1.13, p < 0.000). The choice of accession site had no impact on the risk of periprocedural TIA/stroke (OR = 0.81; CI 0.38-1.72, p = 0.577). CONCLUSION: Observational data from a large prospective registry indicate that accession site has no influence on the risk of periprocedural TIA/stroke after cardiac catheterization

    An efficient approach to BAC based assembly of complex genomes

    Get PDF
    Background: There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate ‘gold’ reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. Results: We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. Conclusions: We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes

    Identifying key questions in the ecology and evolution of cancer

    Get PDF
    The application of evolutionary and ecological principles to cancer prevention and treatment, as well as recognizing cancer as a selection force in nature, has gained impetus over the last 50 years. Following the initial theoretical approaches that combined knowledge from interdisciplinary fields, it became clear that using the eco‐evolutionary framework is of key importance to understand cancer. We are now at a pivotal point where accumulating evidence starts to steer the future directions of the discipline and allows us to underpin the key challenges that remain to be addressed. Here, we aim to assess current advancements in the field and to suggest future directions for research. First, we summarize cancer research areas that, so far, have assimilated ecological and evolutionary principles into their approaches and illustrate their key importance. Then, we assembled 33 experts and identified 84 key questions, organized around nine major themes, to pave the foundations for research to come. We highlight the urgent need for broadening the portfolio of research directions to stimulate novel approaches at the interface of oncology and ecological and evolutionary sciences. We conclude that progressive and efficient cross‐disciplinary collaborations that draw on the expertise of the fields of ecology, evolution and cancer are essential in order to efficiently address current and future questions about cancer

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    Implementace modelu ložiska kaolinu v prostředí Visual Studio 2015

    No full text
    This paper focuses on research within the project TE02000029 Competence Centre for Effective and Ecological Mining of Mineral Resources, granted by The Technology Agency of the Czech Republic, and, more specifically, on the research within its work package WP4 - Spatial modelling of mineral deposits. The focus of this work package is digital modelling of selected nonenergetic raw materials, which belong to the critical commodities, as defined by the European Union. For modelling these deposits, suitable mathematical procedures, based on study and reevaluation of archived data, are needed. One of the selected deposits is a kaolin deposit near the village Jimlíkov near the city Karlovy Vary. The article describes the implementation of the methodology used for processing deposits of kaolin in Visual Studio 2015 by means of objects of Surfer and Voxler created by Golden Software. This software solution is installed at the company Sedlecky kaolin a.s. and thus is fully exploited in practice.Článek popisuje část řešení projektu TE02000029 - Centrum kompetence efektivní a ekologické těžby nerostných surovin (CEEMIR) financovaného Technologickou agenturou ČR, přesněji výsledky řešení Work Package WP4 - Prostorové modelování ložisek nerostných surovin. Hlavním cílem WP4 je digitální modelování vybraných neenergetických surovin, které se řadí mezi kritické komodity EU. Pro modelování ložisek se využívají vhodné matematické postupy na základě studia a přehodnocení dat z archivních materiálů. Jedním z vybraných ložisek je ložisko kaolínu v okolí obce Jimlíkov na Karlovarsku. V článku je popis implementace metodiky zpracování ložiska kaolínu v prostředí Visual Studia 2015 s využitím objektů Surfer a Voxler firmy Golden Software. Vytvořené softwarové řešení je instalováno u firmy Sedlecký kaolín a.s. a je tak plně využíváno v praxi
    corecore