1,334 research outputs found

    Multiple QTL for horticultural traits and quantitative resistance to Phytophthora infestans linked on Solanum habrochaites chromosome 11.

    Get PDF
    Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato

    Algorithms to automatically quantify the geometric similarity of anatomical surfaces

    Full text link
    We describe new approaches for distances between pairs of 2-dimensional surfaces (embedded in 3-dimensional space) that use local structures and global information contained in inter-structure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This renders these studies inaccessible to non-morphologists, and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the references for one of the three datasets. Note that the datasets and code for this paper can be obtained from the Data Conservancy (see Download column on v1, v2

    Using Remote Sensing and Detection of Early Season Invasives (DESI) to Analyze the Temporal Dynamics of Invasive Cheatgrass (Bromus tectorum)

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Using Hotspot Analysis and Detection of Early Season Invasives (DESI) to analyze the temporal and spatial dynamics of invasive cheatgrass (Bromus tectorum).

    Get PDF
    The invasion of exotic annual grasses during the last century has transformed plant habitats and communities worldwide. Cheatgrass (Bromus tectorum) is a winter annual grass that has invaded over 100 million acres of the western United States (Pellant and Hall, 1994. Pellant, 1996). Cheatgrass quickly utilizes available resources especially after a disturbance to the landscape. A major impact of invasion is the increased frequency in fires (D’Antonio and Vitousek, 1992). As cheatgrass is highly successful at invading open and disturbed landscapes at a rapid pace it increases the frequency and severity of fires in arid landscapes (Brooks, 2005). Cheatgrass’ prolific seed production and flammability allows it to competitively exclude native plant species (Seabloom et al., 2003). The successful life strategy of cheatgrass gives a unique spectral image reflectance that can allow the use of remote sensing platforms to track and locate invasions

    Is local best? Examining the evidence for local adaptation in trees and its scale

    Get PDF
    Although the importance of using local provenance planting stock for woodland production, habitat conservation and restoration remains contentious, the concept is easy to understand, attractive and easy to ‘sell’. With limited information about the extent and scale of adaptive variation in native trees, discussion about suitable seed sources often emphasises “local” in a very narrow sense or within political boundaries, rather than being based on sound evidence of the scale over which adaptation occurs. Concerns exist over the actual scale (magnitude and spatial scale) of adaptation in trees and the relative dangers of incorrect seed source or restricted seed collection, leading to the establishment of trees with restricted genetic diversity and limited adaptive potential. Tree provenance and progeny field trials in many parts of the world have shown the existence of genotype by environment interaction in many tree species, but have not necessarily looked at whether this is expressed as a home site advantage (i.e. whether provenance performance is unstable across sites, and there is better performance of a local seed source). This review will examine the evidence for local adaptation and its scale in a number of native tree species from different trial sites across the globe (e.g. tropical, Mediterranean, temperate). These trials have been measured and in some cases results published in a range of formats. The data have, however, usually been presented in the form of which provenances grow best at which sites. The review will examine existing data (published and unpublished) in the context of the scale of local adaptation, with the results being presented in two formats: (a) relating survival, performance of provenances (classified by seed zone/provenance region of origin) to seed zone/provenance region of the planting site; (b) plotting survival, performance provenances against the distance (Euclidean/ecological) between the provenance and the trial site

    Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor

    Get PDF
    Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to ~10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used

    Childhood adversity subtypes and depressive symptoms in early and late adolescence.

    Get PDF
    This is the final version of the article. It first appeared from Cambridge University Press via http://dx.doi.org/10.1017/S0954579414000625Within a longitudinal study of 1,005 adolescents, we investigated how exposure to childhood psychosocial adversities was associated with the emergence of depressive symptoms between 14 and 17 years of age. The cohort was classified into four empirically determined adversity subtypes for two age periods in childhood (0-5 and 6-11 years). One subtype reflects normative/optimal family environments (n = 692, 69%), while the other three subtypes reflect differential suboptimal family environments (aberrant parenting: n = 71, 7%; discordant: n = 185, 18%; and hazardous: n = 57, 6%). Parent-rated child temperament at 14 years and adolescent self-reported recent negative life events in early and late adolescence were included in models implementing path analysis. There were gender-differentiated associations between childhood adversity subtypes and adolescent depressive symptoms. The discordant and hazardous subtypes were associated with elevated depressive symptoms in both genders but the aberrant parenting subtype only so in girls. Across adolescence the associations between early childhood adversity and depressive symptoms diminished for boys but remained for girls. Emotional temperament was also associated with depressive symptoms in both genders, while proximal negative life events related to depressive symptoms in girls only. There may be neurodevelopmental factors that emerge in adolescence that reduce depressogenic symptoms in boys but increase such formation in girls.This work was supported by a Wellcome Trust programme grant (Grant 74296) for the ROOTS data collection, and the NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC; Grant RNAG/186) for Cambridgeshire and Peterborough for data analysis and manuscript preparation. The second author's (T.C.) contribution was partially supported by a Department of Health Career Scientist Award (Public Mental Health). We thank Matthew Owens, Rosie Abbott, Paul Wilkinson, and Jenny Gibson for informative discussions and suggestions throughout manuscript preparation

    Mughal glass: Indian glass from the late modern and early colonial period

    Get PDF
    Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments. The supplements were as follows: (1) high-protein (60% canola meal), (2) a PSC (6% quebracho tannins), (3) 25% aspen bark, and (4) control (100% molasses). Supplements were fed from 0700 to 0900, then lambs were fed fresh aspen leaves collected from stands containing high (Experiment 1, 2) or low (Experiment 3) concentrations of phenolic glycosides (PG). In Experiment 2, lambs were simultaneously offered aspen, a forb (Lathyrus pauciflorus), and a grass (Bromus inermis) collected from the aspen understory. Animals supplemented with high protein or tannins showed greater intake of aspen leaves than animals supplemented with bark or the control diet (P \u3c 0.05), likely because some condensed tannins have a positive effect on protein nutrition and protein aids in PSC detoxification. Overall, animals supplemented with bark showed the lowest aspen intake, suggesting PSC in bark and aspen leaves had additive inhibitory effects on intake. In summary, these results suggest that not only the concentration but also the types and proportions of nutrients and chemical defenses available in the plant community influence aspen use by herbivores

    Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking

    Get PDF
    Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL · kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise

    Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry

    Get PDF
    Atmospheric volatile organic compound (VOC) oxidation mechanisms under pristine (rural/remote) and urban (anthropogenically-influenced) conditions follow distinct pathways due to large differences in nitrogen oxide (NO_x) concentrations. These two pathways lead to products that have different chemical and physical properties and reactivity. Under pristine conditions, isoprene hydroxy hydroperoxides (ISOPOOHs) are the dominant first-generation isoprene oxidation products. Utilizing authentic ISOPOOH standards, we demonstrate that two of the most commonly used methods of measuring VOC oxidation products (i.e., gas chromatography and proton transfer reaction mass spectrometry) observe these hydroperoxides as their equivalent high-NO isoprene oxidation products – methyl vinyl ketone (MVK) and methacrolein (MACR). This interference has led to an observational bias affecting our understanding of global atmospheric processes. Considering these artifacts will help close the gap on discrepancies regarding the identity and fate of reactive organic carbon, revise our understanding of surface-atmosphere exchange of reactive carbon and SOA formation, and improve our understanding of atmospheric oxidative capacity
    corecore