62 research outputs found

    On the long term behavior of meandering rivers

    Get PDF
    In spite of notable advances in the description of river morphodynamics, the long-term dynamics of meandering rivers is still an open question, in particular, regarding the existence of a possible statistical steady state and its scaling properties induced by the competing action of cutoffs and reach elongation. By means of extensive numerical simulations, using three fluid dynamic models of different complexity and analysis of real data from the Amazon, North America, and Russia, we show that the reach cutoffs, besides providing stability and self-confinement to the meander belt, also act as a dynamical filter on several hydrodynamic mechanisms, selecting only those that really dominate the long-term dynamics. The results show that the long-term equilibrium conditions are essentially governed by only one spatial scale (proportional to the ratio of the river depth and the friction coefficient) and one temporal scale (proportional to the square of the spatial scale divided by the river width, the mean longitudinal velocity, and the erodibility coefficient) that contain the most important fluid dynamic quantities. The ensuing statistical long-term behavior of meandering rivers proves to be universal and largely unaffected by the details of the fluid dynamic processes that govern the short-term river behavio

    Significance of cutoff in meandering river dynamics

    Get PDF
    The occurrence of cutoff events, although sporadic, is a key component in the complex dynamics of meandering rivers. In the present work, we show that cutoff has a twofold role: (1) It removes older meanders, limiting the planform geometrical complexity (geometrical role), and (2) it generates an intermittent noise that is able to influence the spatiotemporal dynamics of the whole river (dynamical role). The geometrical role limits the spatial evolution of the meanders, sporadically eliminating portions of the river planimetry. In this way it stabilizes the mean river geometry around a statistically steady state. The dynamical role is due to the propagation of a noise wave that is triggered by cutoff events. Because of the spatial memory component which is present in the meandering dynamics, such waves propagate all along the river, thus affecting its meandering dynamic

    Meandering rivers in modern desert basins: Implications for channel planform controls and prevegetation rivers

    Get PDF
    The influence of biotic processes in controlling the development of meandering channels in fluvial systems is controversial. The majority of the depositional history of the Earth's continents was devoid of significant biogeomorphic interactions, particularly those between vegetation and sedimentation processes. The prevailing perspective has been that prevegetation meandering channels rarely developed and that rivers with braided planforms dominated. However, recently acquired data demonstrate that meandering channel planforms are more widely preserved in prevegetation fluvial successions than previously thought. Understanding the role of prevailing fluvial dynamics in non- and poorly vegetated environments must rely on actualistic models derived from presently active rivers developed in sedimentary basins subject to desert-climate settings, the sparsest vegetated regions experiencing active sedimentation on Earth. These systems have fluvial depositional settings that most closely resemble those present in prevegetation (and extra-terrestrial) environments. Here, we present an analysis based on satellite imagery which reveals that rivers with meandering channel planforms are common in modern sedimentary basins in desert settings. Morphometric analysis of meandering fluvial channel behaviour, where vegetation is absent or highly restricted, shows that modern sparsely and non-vegetated meandering rivers occur across a range of slope gradients and basin settings, and possess a broad range of channel and meander-belt dimensions. The importance of meandering rivers in modern desert settings suggests that their abundance is likely underestimated in the prevegetation rock record, and models for recognition of their deposits need to be improved

    Traffic and Related Self-Driven Many-Particle Systems

    Full text link
    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize in lanes, while similar systems are ``freezing by heating''? Why do self-organizing systems tend to reach an optimal state? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems. This review article on traffic introduces (i) empirically data, facts, and observations, (ii) the main approaches to pedestrian, highway, and city traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts like a general modelling framework for self-driven many-particle systems, including spin systems. Subjects such as the optimization of traffic flows and relations to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are discussed as well.Comment: A shortened version of this article will appear in Reviews of Modern Physics, an extended one as a book. The 63 figures were omitted because of storage capacity. For related work see http://www.helbing.org

    FRACTAL HETEROGENEITY OF CLASTIC RESERVOIRS

    No full text

    Fluctuations at the self-organized critical state

    Full text link

    The Identification of Fault Pattern Fractals for Improved Oil and Gas Recovery: A New Process to Identify and Describe Fault Sets Using Non-Linear Methods

    Full text link
    Unexpected faults are a serious production problem in numerous, complex and compartmentalised oil and gas fields, and are often the single most important restraint on recovery. Fractal mathematics has demonstrated a surprising degree of order in many natural, apparently random systems. It has been shown that fault patterns exhibit a similar order which could be used to indicate the presence of structures missed in the original interpretation of the seismic data and to predict faults below the approximate 20 m limit of seismic resolution. The potential for greater clarity and resolution opened up by this method may greatly aid field description and reservoir production. We will discuss the development of a comprehensive fault pattern characterisation quantatively with a set of parameters arising from non-linear methods of analysis. This allows for the standardised comparison of seismic interpretations and a precise method for testing interpretations from the same dataset. We will show how fractal mathematics may give a measure of the density of the fault set, the number of faults below the limit of seismic resolution, resolve small fault clusters below the limit of seismic resolution and aid in the description and analysis of fault sets. </jats:p
    corecore