34 research outputs found

    Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain

    No full text
    BACKGROUND Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of RhaIII, in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome. RESULTS In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a. CONCLUSIONS This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.This work was supported by grants from the Swedish Research Council and The Knut and Alice Wallenberg Foundation to GW

    Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H

    Get PDF
    Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-ÎČ-d-GlcpNAcA-(1 →3)-ÎČ-d-QuipNAc4NAc-(1 →3)-ÎČ-d-GalpNAc-(1 →. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity

    Genomic insertion of a heterologous acetyltransferase generates a new lipopolysaccharide antigenic structure in brucella abortus and brucella melitensis

    Get PDF
    Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    BerÀkningskemisk undersökning av faktorer som pÄverkar reaktiviteten för hetero Diels-Alder-reaktionen

    No full text
    Recent research has shown that small hydrogen bonding catalysts can catalyze the hetero Diels-Alder reaction. In this thesis such hydrogen bonding catalysts in conjunction with varying functional groups and their effect on the hetero Diels-Alder reaction have been investigated. The influence of the different solvents has been investigated as well. The activation barriers for the different region- and stereo isomeric pathways have been compared in order to determine the stereo specificity of the reactions. These calculations have been done using the B3LYP functional for the geometry optimizations and then M06-2X for single point calculations. For the solvated cases the cPCM model and the M06-2X functional were used. It was shown that for the catalyzed systems bulkier groups in the endo position tend to have a lower activation barrier, allowing for control over the stereoselectivity. Electron withdrawing groups have an activating effect and are also synergistic with the hydrogen bonding catalysts. The solvent with the lowest dielectric constant gave the lowest activation barrier

    Structure Elucidations of Bacterial Polysaccharides using NMR Spectroscopy and Bioinformatics

    No full text
    Carbohydrates are ubiquitous components in nature involved in a range of tasks. They cover every cell and contribute both structural stability as well as identity. Lipopolysaccharides are the outermost exposed part of the bacterial cell wall and the primary target for host-pathogen recognition. Understanding the structure and biosynthesis of these polysaccharides is crucial to combat disease and develop new medicine. Structural determinations can be carried out using NMR spectroscopy, a powerful tool giving information on an atomistic scale. This thesis is focused on method development to study polysaccharide structures as well as application on bacterial lipopolysaccharides. The focus has been to incorporate a bioinformatics approach prior to analysis by NMR spectroscopy, and then computer assisted methods to aid in the subsequent analysis of the spectra. The third chapter deals with the recent developments of ECODAB, a tool that can help predict structural fragments in Escherichia coli O-antigens. It was migrated to a relational database and the aforementioned predictions can now be made automatically by ECODAB. The fourth chapter gives insight into the program CASPER, a computer program that helps with structure determination of oligo- and polysaccharides. An approach to determine substituent positions in polysaccharides was investigated. The underlying database was also expanded and the improved capabilities were demonstrated by determining O-antigenic structures that could not previously be solved. The fifth chapter is an application to O‑antigen structures of E. coli strains. This is done by a combination of NMR spectroscopy and bioinformatics to predict components as well as linkages prior to spectra analysis. In the first case, a full structure elucidation was performed on E. coli serogroup O63, and in the second case a demonstration of the bioinformatics approach is done to E. coli serogroup O93. In the sixth chapter, a new version of the CarbBuilder software is presented. This includes a more robust building algorithm that helps build sterically crowded polysaccharide structures, as well as a general expansion of possible components. At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.</p

    Experiences of the relatives in the intensive care environment

    No full text
    Bakgrund: IntensivvĂ„rden Ă€r en högteknologisk miljö dĂ€r svĂ„rt sjuka patienter vĂ„rdas. Anhörigas betydelse för kritiskt sjuka patienter Ă€r stor och det kan vara omvĂ€lvande att vara nĂ€rstĂ„ende i en högteknologisk miljö. IntensivvĂ„rdssjuksköterskor kan spela en betydelsefull roll i hur de nĂ€rstĂ„ende erfar sin omgivning. Syfte: Syftet med denna studie var att belysa upplevelsen av att vara anhörig i en intensivvĂ„rdsmiljö. Metod: En deskriptiv metod med kvalitativ ansats har anvĂ€nts i denna studie. Tre fokusgrupper med vardera tre deltagare som varit anhöriga till intensivvĂ„rdspatienter och som har valts ut genom ett bekvĂ€mlighetsurval har intervjuats. Resultat: Resultatet presenterades genom tre kategorier med tillhörande Ă„tta underkategorier. Kategorin intensivvĂ„rdsrummets utformning (upplevelse av interiören, teknik och apparatur, möjlighet till avskildhet) uppvisade att intensivvĂ„rdsrummet kan förbĂ€ttras avseende ljussĂ€ttning, fĂ€rg, möblemang och möjlighet till avskildhet. I kategorin omgivningens betydelse (upplevelse av atmosfĂ€ren, upplevelse av intensivvĂ„rdssjuksköterskans roll) framkom att de anhöriga i hög grad upplevde intensivvĂ„rdsmiljön som trygg och de nĂ€rstĂ„ende hade stor tillit till intensivvĂ„rdssjuksköterskor. Kategorin situationen som anhörig (upplevelse av trygghet, upplevelse av maktlöshet och copingstrategier) belyser att de anhöriga upplever kĂ€nsla av trygghet och maktlöshet parallellt. Resultatet frambringade Ă€ven flertalet copingstrategier som anhöriga anvĂ€nde sig av för att bemĂ€stra sin situation. Slutsats: De anhöriga var överlag nöjda med intensivvĂ„rden och dess miljö. VĂ„rdnivĂ„n var förknippad med skicklig personal med kontroll över deras sjuka familjemedlemmar. Beroende pĂ„ var de anhöriga befunnit sig i sina krisbearbetningsfaser har de i olika grad analyserat sin omgivande miljö. Klinisk betydelse: ÅtgĂ€rder behövs för att förbĂ€ttra vĂ„rdmiljön för anhöriga i synnerhet möjligheten till avskildhet.Background: The Intensive Care Unit (ICU) treats critically ill patients in need of sophisticated treatment and supervision. Family members are important for critically ill patients and it is often an extensive experience for them to visit the ICU. The ICU-nurses can influence how family members experience the environment. Objective: The purpose of this study was to explore how family members experienced the intensive care environment. Method: The study was conducted as a structured interview study. Three focus groups were interviewed, each containing three family members to former or present ICU-patients. Results: The result is presented through three categories and eight subcategories. Experiences of the ICU-room (interior design, technical equipment, the possibility for privacy) declared that improvement could be done in the ICU-environment regarding lightning, furniture and the possibilities for privacy. Meanings of the surroundings (experiences of the atmosphere and of the ICU-nurse) revealed that most family members considered the ICU-environment as safe. The family members had confidence and reliance in their ICU-nurses. The category position of next in kin (experience of safety and of powerlessness and coping strategies) disclosed feelings of seriousness and uncertainty combined with emotions around safety. The result also showed several coping strategies used by the participants. Conclusion: The family members were in overall satisfied with their experience at the ICU as its specific environment is associated with skilled staff and good supervision. The present participants’ situation affected the perception of the ICU-environment. Clinical relevance: The results can hopefully give guidance to changes in ICU, especially regarding the possibility for privacy

    Conformational Dynamics and Exchange Kinetics of N-Formyl and N-Acetyl Groups Substituting 3-Amino-3,6-dideoxy-alpha-D-galactopyranose, a Sugar Found in Bacterial O-Antigen Polysaccharides

    No full text
    Three dimensional shape and conformation of. carbohydrates are important factors in molecular recognition events and the N-acetyl group of a monosaccharide residue can function as a conformational gatekeeper whereby it influences the overall shape of the oligosaccharide. NMR spectroscopy and quantum mechanics (QM) calculations are used herein to investigate both the conformational preferences and the dynamic behavior of N-acetyl and N-formyl substituents of 3-amino-3,6-dideoxy-alpha-D-galactopyranose, a sugar and substitution pattern found in bacterial O-antigen polysaccharides. QM calculations suggest that the amide oxygen can be involved in hydrogen bonding with the axial OH4 group primarily but also with the equatorial OH2 group. However, an NMR J coupling analysis indicates that the 01 torsion angle, adjacent to the sugar ring, prefers an ap conformation where conformations &lt;180 degrees also are accessible, but does not allow for intramolecular hydrogen bonding. In the formyl-substituted compound (4)J(HH) coupling constants to the exo-cyclic group were detected and analyzed. A van't Hoff analysis revealed that the trans conformation at the amide bond is favored by Delta G degrees approximate to - 0.8 kcal.mol(-1) in the formyl-containing compound and with Delta G degrees approximate to -2.5 kcal.mol(-1) when the N-acetyl group is the substituent. In both cases the enthalpic term dominates to the free energy, irrespective of water or DMSO as solvent, with only a small contribution from the entropic term. The cis-trans isomerization of the theta(2) torsion angle, centered at the amide bond, was also investigated by employing H-1 NMR line shape analysis and C-13 NMR saturation transfer experiments. The extracted transition rate constants were utilized to calculate transition energy barriers that were found to be about 20 kcal.mol(-1) in both DMSO-d(6) and D2O. Enthalpy had a higher contribution to the energy barriers in DMSO-d(6) compared to in D2O, where entropy compensated for the loss of enthalpy.Open Access 2019-12-01</p
    corecore