26 research outputs found

    Calophylluminophyllum (Punnai Seed Oil) derived biofuel blends: Thermal performance and engine emissions

    Get PDF
    An alternative renewable fuel resource must be identified to sustainably fulfill the expanding global energy demand. This study obtains a novel biofuel from the Punnai plant, and its physicochemical properties are evaluated against relevant standards. Conventional Diesel and Punnai oil diesel mixes are tested in an unchanged 4-stroke CI engine. As the mix ratio increases, the brake thermal efficiency decreases from 30.2% (diesel) to 26% (P40 Punnai oil diesel mix). As the percentage of blends increases, the heat-release rate decreases compared to regular diesel. The emission parameters CO, unburned HC, and smoke increase with increasing blend ratio, whereas NOx emission parameters decrease. Its natural or esterified form is suitable for a standard diesel engine. Punnai seed oil has the potential to fuel our transportation needs sustainably. Its unique energy content and ability to reduce emissions make it a promising alternative to traditional fossil fuels. With further research and development, punnai seed oil could be the driving force behind a cleaner and greener transportation future

    History Matters: Oviposition Resource Acceptance in an Exploiter of a Nursery Pollination Mutualism

    No full text
    In the fig-fig wasp nursery pollination system, parasitic wasps, such as gallers and parasitoids that oviposit from the exterior into the fig syconium (globular, enclosed inflorescence) are expected to use a variety of chemical cues for successful location of their hidden hosts. Behavioral assays were performed with freshly eclosed naive galler wasps. Syconia with different oviposition histories, i.e. with or without prior oviposition, were presented to wasps in no-choice assays and the time taken to the first oviposition attempt was recorded. The wasps exhibited a preference for syconia previously exposed to conspecifics for oviposition over unexposed syconia. Additionally, syconia exposed to oviposition by heterospecific wasps were also preferred for oviposition over unexposed syconia indicating that wasps recognise and respond to interspecific cues. Wasps also aggregated for oviposition on syconia previously exposed to oviposition by conspecifics. We investigated chemical cues that wasps may employ in accepting an oviposition resource by analyzing syconial volatile profiles, chemical footprints left by wasps on syconia, and syconial surface hydrocarbons. The volatile profile of a syconium is influenced by the identity of wasps developing within and may be used to identify suitable host syconia at long range whereas close range preference seems to exploit wasp footprints that alter syconium surface hydrocarbon profiles. These cues act as indicators of the oviposition history of the syconium, thereby helping wasps in their oviposition decisions

    Plant reproductive traits mediate tritrophic feedback effects within an obligate brood-site pollination mutualism

    No full text
    Plants, herbivores and parasitoids affect each other directly and indirectly; however, feedback effects mediated by host plant traits have rarely been demonstrated in these tritrophic interactions. Brood-site pollination mutualisms (e.g. those involving figs and fig wasps) represent specialised tritrophic communities where the progeny of mutualistic pollinators and of non-mutualistic gallers (both herbivores) together with that of their parasitoids develop within enclosed inflorescences called syconia (hence termed brood-sites or microcosms). Plant reproductive phenology (which affects temporal brood-site availability) and inflorescence size (representing brood-site size) are plant traits that could affect reproductive resources, and hence relationships between trees, pollinators and non-pollinating wasps. Analysing wasp and seed contents of syconia, we examined direct, indirect, trophic and non-trophic relationships within the interaction web of the fig-fig wasp community of Ficus racemosa in the context of brood site size and availability. We demonstrate that in addition to direct resource competition and predator-prey (host-parasitoid) interactions, these communities display exploitative or apparent competition and trait-mediated indirect interactions. Inflorescence size and plant reproductive phenology impacted plant-herbivore and plant-parasitoid associations. These plant traits also influenced herbivore-herbivore and herbivore-parasitoid relationships via indirect effects. Most importantly, we found a reciprocal effect between within-tree reproductive asynchrony and fig wasp progeny abundances per syconium that drives a positive feedback cycle within the system. The impact of a multitrophic feedback cycle within a community built around a mutualistic core highlights the need for a holistic view of plant-herbivore-parasitoid interactions in the community ecology of mutualisms

    Nutritional benefits from domatia inhabitants in an ant-plant interaction: interlopers do pay the rent

    No full text
    1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis

    Foliar Extrafloral Nectar of Humboldtia brunonis (Fabaceae), a Paleotropic Ant-plant, is Richer than Phloem Sap and More Attractive than Honeydew

    No full text
    The ant-plant Humboldtia brunonis secretes extrafloral nectar (EFN) despite the lack of antiherbivore protection from most ants. EFN was richer in composition than phloem sap and honeydew from untended Hemiptera on the plant, suggesting that EFN could potentially distract ants from honeydew, since ants rarely tended Hemiptera on this plant

    Context dependency of rewards and services in an Indian ant-plant interaction: southern sites favour the mutualism between plants and ants

    No full text
    Protection-based ant-plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyte Humboldtia brunonis (Fabaceae) in the Indian Western Ghats. Southern siteshad, onaverage, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. Astrong protection-based mutualismwith ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north-south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant-plant mutualistic system
    corecore