30 research outputs found

    Pathogenesis of swine influenza virus (Thai isolates) in weanling pigs: an experimental trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV) subtype H1N1 and H3N2 (Thai isolates) in 22-day-old SPF pigs.</p> <p>Results</p> <p>The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi). The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation.</p> <p>Conclusion</p> <p>The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.</p

    Genetic variations of nucleoprotein gene of influenza A viruses isolated from swine in Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A virus causes severe disease in both humans and animals and thus, has a considerably impact on economy and public health. In this study, the genetic variations of the nucleoprotein (NP) gene of influenza viruses recovered from swine in Thailand were determined.</p> <p>Results</p> <p>Twelve influenza A virus specimens were isolated from Thai swine. All samples were subjected to nucleotide sequencing of the complete NP gene. Phylogenetic analysis was conducted by comparing the NP gene of swine influenza viruses with that of seasonal and pandemic human viruses and highly pathogenic avian viruses from Thailand (n = 77). Phylogenetic analysis showed that the NP gene from different host species clustered in distinct host specific lineages. The NP gene of swine influenza viruses clustered in either Eurasian swine or Classical swine lineages. Genetic analysis of the NP gene suggested that swine influenza viruses circulating in Thailand display 4 amino acids unique to Eurasian and Classical swine lineages. In addition, the result showed 1 and 5 amino acids unique to avian and human lineages, respectively. Furthermore, nucleotide substitution rates showed that the NP gene is highly conserved especially in avian influenza viruses.</p> <p>Conclusion</p> <p>The NP gene sequence of influenza A in Thailand is highly conserved within host-specific lineages and shows amino acids potentially unique to distinct NP lineages. This information can be used to investigate potential interspecies transmission of influenza A viruses. In addition, the genetic variations of the NP gene will be useful for monitoring the viruses and preparing effective prevention and control strategies for potentially pandemic influenza outbreaks.</p

    Pandemic (H1N1) 2009 Virus on Commercial Swine Farm, Thailand

    Get PDF
    A swine influenza outbreak occurred on a commercial pig farm in Thailand. Outbreak investigation indicated that pigs were co-infected with pandemic (H1N1) 2009 virus and seasonal influenza (H1N1) viruses. No evidence of gene reassortment or pig-to-human transmission of pandemic (H1N1) 2009 virus was found during the outbreak

    Cultivation cost-benefit analysis of some important medicinal plants in Serbia

    Get PDF
    Driven by frequent media misinformation about the level of profitability of growing certain medicinal plants, in this paper we presented a cost-benefit analysis based on twenty years of experience in field production. The observed costs and profits for peppermint, chamomile, lemon balm, marshmallow, valerian and pot marigold are based on the average values of production elements within the current prices of labor, energy and raw materials. Fixed costs in this paper were deliberately neglected and the discussion was based on the assumption of the existence and availability of infrastructure. In the cost analysis, we divided them into four main groups, which had different shares in total costs such as labor 45-79 %, drying 5 – 37 %, material, 9-16 % and machinery use 4-13 %. Regarding the level of profitability of cultivation of the six observed medicinal plants valerian was the most profitable with an estimated profit of over 4000 €/ha. Next best earning plants were lemon balm and marshmallow with about 3500 €/ha, while the income from peppermint and chamomile was more than twice lower and it was around 1500 €/ha. The lowest profit was realized by cultivating marigold (about 600 €/ha) due to the high labor consumption on the flower picking operation. In terms of labor consumption marshmallow, pot marigold and valerian are the most demanding with 365, 285 and 150 working days per hectare, respectively. The general conclusion of this observation of the profitability of growing medicinal plants would be that the producer must be aware of the costs and scope of labor engagement he expects per unit area before embarking on the calculation of production

    Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus

    Get PDF
    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains
    corecore