24 research outputs found
Cassini Uvis Stellar Occultation Observations of Saturn\u27s Rings
The Cassini spacecraft\u27s Ultraviolet Imaging Spectrograph (UVIS) includes a high-speed photometer (HSP) that has observed more than 100 stellar occultations by Saturn\u27s rings. Here, we document a standardized technique applied to the UVIS-HSP ring occultation datasets delivered to the Planetary Data System as higher level data products. These observations provide measurements of ring structure that approaches the scale of the largest common ring particles (similar to 5 m). The combination of multiple occultations at different viewing geometries enables reconstruction of the three-dimensional structure of the rings. This inversion of the occultation data depends on accurate calibration of the data so that occultations of different stars taken at different times and under different viewing conditions can be combined to retrieve ring structure. We provide examples of the structure of the rings as seen from several occultations at different incidence angles to the rings, illustrating changes in the apparent structure with viewing geometry
Physical characteristics and non-keplerian orbital motion of "propeller" moons embedded in Saturn's rings
We report the discovery of several large "propeller" moons in the outer part
of Saturn's A ring, objects large enough to be followed over the 5-year
duration of the Cassini mission. These are the first objects ever discovered
that can be tracked as individual moons, but do not orbit in empty space. We
infer sizes up to 1--2 km for the unseen moonlets at the center of the
propeller-shaped structures, though many structural and photometric properties
of propeller structures remain unclear. Finally, we demonstrate that some
propellers undergo sustained non-keplerian orbit motion. (Note: This arXiv
version of the paper contains supplementary tables that were left out of the
ApJL version due to lack of space).Comment: 9 pages, 4 figures; Published in ApJ
The population of propellers in Saturn's A Ring
We present an extensive data set of ~150 localized features from Cassini
images of Saturn's Ring A, a third of which are demonstrated to be persistent
by their appearance in multiple images, and half of which are resolved well
enough to reveal a characteristic "propeller" shape. We interpret these
features as the signatures of small moonlets embedded within the ring, with
diameters between 40 and 500 meters. The lack of significant brightening at
high phase angle indicates that they are likely composed primarily of
macroscopic particles, rather than dust. With the exception of two features
found exterior to the Encke Gap, these objects are concentrated entirely within
three narrow (~1000 km) bands in the mid-A Ring that happen to be free from
local disturbances from strong density waves. However, other nearby regions are
similarly free of major disturbances but contain no propellers. It is unclear
whether these bands are due to specific events in which a parent body or bodies
broke up into the current moonlets, or whether a larger initial moonlet
population has been sculpted into bands by other ring processes.Comment: 31 pages, 10 figures; Accepted at A
Galileo dust data from the jovian system: 2000 to 2003
The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003.
The Galileo dust detector monitored the jovian dust environment between about 2
and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo
dust instrument for the period January 2000 to September 2003. We report on the
data of 5389 particles measured between 2000 and the end of the mission in
2003. The majority of the 21250 particles for which the full set of measured
impact parameters (impact time, impact direction, charge rise times, charge
amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in
radius), most of them originating from Jupiter's innermost Galilean moon Io.
Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact
rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280
R_J from Jupiter. This peak in dust emission appears to coincide with strong
changes in the release of neutral gas from the Io torus. Strong variability in
the Io dust flux was measured on timescales of days to weeks, indicating large
variations in the dust release from Io or the Io torus or both on such short
timescales. Galileo has detected a large number of bigger micron-sized
particles mostly in the region between the Galilean moons. A surprisingly large
number of such bigger grains was measured in March 2003 within a 4-day interval
when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J
jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003
provided the first actual comparison of in-situ dust data from a planetary ring
with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space
Scienc
An Evolving View of Saturn's Dynamic Rings
International audienceWe review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
On the nature of clumps in debris disks
The azimuthal substructure observed in some debris disks, as exemplified by
epsilon Eridani, is usually attributed to resonances with embedded planets. In
a standard scenario, the Poynting-Robertson force, possibly enhanced by the
stellar wind drag, is responsible for the delivery of dust from outer regions
of the disk to locations of external mean-motion planetary resonances; the
captured particles then create characteristic ``clumps''. Alternatively, it has
been suggested that the observed features in systems like epsilon Eri may stem
from populations of planetesimals that have been captured in resonances with
the planet, such as Plutinos and Trojans in the solar system. A large fraction
of dust produced by these bodies would stay locked in the same resonance,
creating the dusty clumps. To investigate both scenarios and their
applicability limits for a wide range of stars, planets, disk densities, and
planetesimal families we construct simple analytic models for both scenarios.
In particular, we show that the first scenario works for disks with the pole-on
optical depths below about ~10^{-4}-10^{-5}. Above this optical depth level,
the first scenario will generate a narrow resonant ring with a hardly visible
azimuthal structure, rather than clumps. The efficiency of the second scenario
is proportional to the mass of the resonant planetesimal family, as example, a
family with a total mass of ~0.01 to 0.1 Earth masses could be sufficient to
account for the clumps of epsilon Eridani.Comment: 15 pages, 10 figures accepted at Astronomy&Astrophysics, Sep. 20,
2006 (in press
Planetary Rings
Planetary rings are the only nearby astrophysical disks, and the only disks
that have been investigated by spacecraft. Although there are significant
differences between rings and other disks, chiefly the large planet/ring mass
ratio that greatly enhances the flatness of rings (aspect ratios as small as
1e-7), understanding of disks in general can be enhanced by understanding the
dynamical processes observed at close-range and in real-time in planetary
rings. We review the known ring systems of the four giant planets, as well as
the prospects for ring systems yet to be discovered. We then review planetary
rings by type. The main rings of Saturn comprise our system's only dense broad
disk and host many phenomena of general application to disks including spiral
waves, gap formation, self-gravity wakes, viscous overstability and normal
modes, impact clouds, and orbital evolution of embedded moons. Dense narrow
rings are the primary natural laboratory for understanding shepherding and
self-stability. Narrow dusty rings, likely generated by embedded source bodies,
are surprisingly found to sport azimuthally-confined arcs. Finally, every known
ring system includes a substantial component of diffuse dusty rings. Planetary
rings have shown themselves to be useful as detectors of planetary processes
around them, including the planetary magnetic field and interplanetary
impactors as well as the gravity of nearby perturbing moons. Experimental rings
science has made great progress in recent decades, especially numerical
simulations of self-gravity wakes and other processes but also laboratory
investigations of coefficient of restitution and spectroscopic ground truth.
The age of self-sustained ring systems is a matter of debate; formation
scenarios are most plausible in the context of the early solar system, while
signs of youthfulness indicate at least that rings have never been static
phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be
published in "Planets, Stars and Stellar Systems", P. Kalas and L. French
(eds.), Springer (http://refworks.springer.com/sss