332 research outputs found

    Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone

    Get PDF
    Collagen isolated from archaeological bone is a common material for radiocarbon dating, stable isotope analysis, and zooarchaeology by mass spectrometry (ZooMS). However, not all bones contain extant collagen, leading to unnecessary destruction of unproductive bones and wasted laboratory time and resources. An aim of this research is to study bone diagenesis, particularly collagen destruction, in an effort to develop a minimally destructive method for identifying bones with high collagen content. In a multi-method study of variably preserved bones from Etton, Cambridgeshire, UK, we examined material properties of Neolithic cattle and sheep bones including porosity, surface area, and elemental composition. Micro-computed tomography (microCT) is an imaging technique that furnishes three-dimensional images of mineralized materials such as bone. Cortical bone porosity, the percentage of total bone volume consisting of empty space as calculated using microCT, can act as a proxy for bone collagen preservation. In general, bones with high cortical porosity are unlikely to contain sufficient collagen for further analysis. Bones with apparently low cortical porosity have a more varied range of collagen preservation. Bone samples with low porosity and no extant collagen often contain micropores with a diameter of 10 nm or less that cannot be seen in microCT images but are apparent in pore size distributions measured by mercury porosimetry, and indicated by high surface areas measured by nitrogen adsorption. Furthermore, a re-evaluation of light-induced breakdown spectroscopy data from this same assemblage confirms that ratios of calcium to fluorine may likewise indicate the state of diagenesis

    Atypical Neurophysiology Underlying Episodic and Semantic Memory in Adults with Autism Spectrum Disorder

    Get PDF
    Individuals with autism spectrum disorder (ASD) show atypicalities in episodic memory (Boucher et al. in Psychological Bulletin, 138 (3), 458-496, 2012). We asked participants to recall the colours of a set of studied line drawings (episodic judgement), or to recognize line drawings alone (semantic judgement). Cycowicz et al. (Journal of Experimental Child Psychology, 65, 171-237, 2001) found early (300 ms onset) posterior old-new event-related potential effects for semantic judgements in typically developing (TD) individuals, and occipitally focused negativity (800 ms onset) for episodic judgements. Our results replicated findings in TD individuals and demonstrate attenuated early old-new effects in ASD. Late posterior negativity was present in the ASD group, but was not specific to this time window. This non-specificity may contribute to the atypical episodic memory judgements characteristic of individuals with ASD

    The Malawi National Tuberculosis Programme: an equity analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until 2005, the Malawi National Tuberculosis Control Programme had been implemented as a vertical programme. Working within the Sector Wide Approach (SWAp) provides a new environment and new opportunities for monitoring the equity performance of the programme. This paper synthesizes what is known on equity and TB in Malawi and highlights areas for further action and advocacy.</p> <p>Methods</p> <p>A synthesis of a wide range of published and unpublished reports and studies using a variety of methodological approaches was undertaken and complemented by additional analysis of routine data on access to TB services. The analysis and recommendations were developed, through consultation with key stakeholders in Malawi and a review of the international literature.</p> <p>Results</p> <p>The lack of a prevalence survey severely limits the epidemiological knowledge base on TB and vulnerability. TB cases have increased rapidly from 5,334 in 1985 to 28,000 in 2006. This increase has been attributed to HIV/AIDS; 77% of TB patients are HIV positive. The age/gender breakdown of TB notification cases mirrors the HIV epidemic with higher rates amongst younger women and older men. The WHO estimates that only 48% of TB cases are detected in Malawi. The complexity of TB diagnosis requires repeated visits, long queues, and delays in sending results. This reduces poor women and men's ability to access and adhere to services. The costs of seeking TB care are high for poor women and men – up to 240% of monthly income as compared to 126% of monthly income for the non-poor. The TB Control Programme has attempted to increase access to TB services for vulnerable groups through community outreach activities, decentralising DOT and linking with HIV services.</p> <p>Conclusion</p> <p>The Programme of Work which is being delivered through the SWAp is a good opportunity to enhance equity and pro-poor health services. The major challenge is to increase case detection, especially amongst the poor, where we assume most 'missing cases' are to be found. In addition, the Programme needs a prevalence survey which will enable thorough equity monitoring and the development of responsive interventions to promote service access amongst 'missing' women, men, boys and girls.</p

    Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    Get PDF
    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative

    Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle

    Get PDF
    Myosin binding protein-C (MyBP-C), a major thick filament associated sarcomeric protein, plays an important functional and structural role in regulating sarcomere assembly and crossbridge formation. Missing or aberrant MyBP-C proteins (both cardiac and skeletal) have been shown to cause both cardiac and skeletal myopathies, thereby emphasising its importance for the normal functioning of the sarcomere. Mutations in cardiac MyBP-C are a major cause of hypertrophic cardiomyopathy (HCM), while mutations in skeletal MyBP-C have been implicated in a disease of skeletal muscle—distal arthrogryposis type 1 (DA-1). Here we report the first detailed electron microscopy studies on human cardiac and skeletal tissues carrying MyBP-C gene mutations, using samples obtained from HCM and DA-1 patients. We have used established image averaging methods to identify and study the axial distribution of MyBP-C on the thick filament by averaging profile plots of the A-band of the sarcomere from electron micrographs of human cardiac and skeletal myopathy specimens. Due to the difficulty of obtaining normal human tissue, we compared the distribution to the A-band structure in normal frog skeletal, rat cardiac muscle and in cardiac muscle of MyBP-C-deficient mice. Very similar overall profile averages were obtained from the C-zones in cardiac HCM samples and skeletal DA-1 samples with MyBP-C gene mutations, suggesting that mutations in MyBP-C do not alter its mean axial distribution along the thick filament

    Left−Right Asymmetry Defect in the Hippocampal Circuitry Impairs Spatial Learning and Working Memory in iv Mice

    Get PDF
    Although left-right (L−R) asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B) subunits. We further examined the ε2 asymmetry in the inversus viscerum (iv) mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness) in the synaptic distribution of theε2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP) task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L−R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory

    The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic Memory

    Get PDF
    Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks

    In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma

    Get PDF
    Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks

    Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the <it>in vivo </it>and <it>in vitro </it>effects of Kihi-to on memory, neurite growth and synapse reconstruction.</p> <p>Methods</p> <p>Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.</p> <p>Results</p> <p>Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Aβ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Aβ(25–35)-induced calcium entry.</p> <p>Conclusion</p> <p>In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.</p

    U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line

    Get PDF
    U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30× genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date
    corecore