529 research outputs found
Earth‐Moon‐Mars Radiation Environment Module framework
[1] We are preparing to return humans to the Moon and setting the stage for exploration to Mars and beyond. However, it is unclear if long missions outside of low-Earth orbit can be accomplished with acceptable risk. The central objective of a new modeling project, the Earth-Moon-Mars Radiation Exposure Module (EMMREM), is to develop and validate a numerical module for characterizing time-dependent radiation exposure in the Earth-Moon-Mars and interplanetary space environments. EMMREM is being designed for broad use by researchers to predict radiation exposure by integrating over almost any incident particle distribution from interplanetary space. We detail here the overall structure of the EMMREM module and study the dose histories of the 2003 Halloween storm event and a June 2004 event. We show both the event histories measured at 1 AU and the evolution of these events at observer locations beyond 1 AU. The results are compared to observations at Ulysses. The model allows us to predict how the radiation environment evolves with radial distance from the Sun. The model comparison also suggests areas in which our understanding of the physics of particle propagation and energization needs to be improved to better forecast the radiation environment. Thus, we introduce the suite of EMMREM tools, which will be used to improve risk assessment models so that future human exploration missions can be adequately planned for
A convenient category of locally preordered spaces
As a practical foundation for a homotopy theory of abstract spacetime, we
extend a category of certain compact partially ordered spaces to a convenient
category of locally preordered spaces. In particular, we show that our new
category is Cartesian closed and that the forgetful functor to the category of
compactly generated spaces creates all limits and colimits.Comment: 26 pages, 0 figures, partially presented at GETCO 2005; changes:
claim of Prop. 5.11 weakened to finite case and proof changed due to problems
with proof of Lemma 3.26, now removed; Eg. 2.7, statement before Lem. 2.11,
typos, and other minor problems corrected throughout; extensive rewording;
proof of Lem. 3.31, now 3.30, adde
Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems
Most current methods for identifying coherent structures in
spatially-extended systems rely on prior information about the form which those
structures take. Here we present two new approaches to automatically filter the
changing configurations of spatial dynamical systems and extract coherent
structures. One, local sensitivity filtering, is a modification of the local
Lyapunov exponent approach suitable to cellular automata and other discrete
spatial systems. The other, local statistical complexity filtering, calculates
the amount of information needed for optimal prediction of the system's
behavior in the vicinity of a given point. By examining the changing
spatiotemporal distributions of these quantities, we can find the coherent
structures in a variety of pattern-forming cellular automata, without needing
to guess or postulate the form of that structure. We apply both filters to
elementary and cyclical cellular automata (ECA and CCA) and find that they
readily identify particles, domains and other more complicated structures. We
compare the results from ECA with earlier ones based upon the theory of formal
languages, and the results from CCA with a more traditional approach based on
an order parameter and free energy. While sensitivity and statistical
complexity are equally adept at uncovering structure, they are based on
different system properties (dynamical and probabilistic, respectively), and
provide complementary information.Comment: 16 pages, 21 figures. Figures considerably compressed to fit arxiv
requirements; write first author for higher-resolution version
Results on correlations and fluctuations from NA49
The large acceptance and high momentum resolution as well as the significant
particle identification capabilities of the NA49 experiment at the CERN SPS
allow for a broad study of fluctuations and correlations in hadronic
interactions. In the first part recent results on event-by-event charge and p_t
fluctuations are presented. Charge fluctuations in central Pb+Pb reactions are
investigated at three different beam energies (40, 80, and 158 AGeV), while for
the p_t fluctuations the focus is put on the system size dependence at 158
AGeV. In the second part recent results on Bose Einstein correlations of h-h-
pairs in minimum bias Pb+Pb reactions at 40 and 158 AGeV, as well as of K+K+
and K-K- pairs in central Pb+Pb collisions at 158 AGeV are shown. Additionally,
other types of two particle correlations, namely pi p, Lambda p, and Lambda
Lambda correlations, have been measured by the NA49 experiment. Finally,
results on the energy and system size dependence of deuteron coalescence are
discussed.Comment: 10 pages, 12 figures, Presented at Quark Matter 2002, Nantes, France,
Corrected error in Eq.
Bose-Einstein Correlations of Charged Kaons in Central Pb+Pb Collisions at
Bose-Einstein correlations of charged kaons were measured near mid-rapidity
in central Pb+Pb collisions at 158 AGeV by the NA49 experiment at the
CERN SPS. Source radii were extracted using the Yano-Koonin-Podgoretsky and
Bertsch-Pratt parameterizations. The results are compared to published pion
data. The measured dependence for kaons and pions is consistent with
collective transverse expansion of the source and a freeze-out time of about
9.5 .Comment: 14 pages with 7 figures, submitted to Phys. Lett.
Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon
Net proton and negative hadron spectra for central \PbPb collisions at 158
GeV per nucleon at the CERN SPS were measured and compared to spectra from
lighter systems. Net baryon distributions were derived from those of net
protons, utilizing model calculations of isospin contributions as well as data
and model calculations of strange baryon distributions. Stopping (rapidity
shift with respect to the beam) and mean transverse momentum \meanpt of net
baryons increase with system size. The rapidity density of negative hadrons
scales with the number of participant nucleons for nuclear collisions, whereas
their \meanpt is independent of system size. The \meanpt dependence upon
particle mass and system size is consistent with larger transverse flow
velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures.
Typos corrected, some paragraphs expanded in response to referee comments, to
better explain details of analysi
Lambda production in central Pb+Pb collisions at CERN-SPS energies
In this paper we present recent results from the NA49 experiment for
and hyperons produced in central Pb+Pb collisions at
40, 80 and 158 AGeV. Transverse mass spectra and rapidity distributions
for are shown for all three energies. The shape of the rapidity
distribution becomes flatter with increasing beam energy. The multiplicities at
mid-rapidity as well as the total yields are studied as a function of collision
energy including AGS measurements. The ratio at mid-rapidity and
in 4 has a maximum around 40 AGeV. In addition,
rapidity distributions have been measured at 40 and 80 AGeV, which
allows to study the / ratio.Comment: SQM proceedings. J. Phys. G: Nucl. Part. Phys.: submitte
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Event-by-event fluctuations of the kaon to pion ratio in central Pb+Pb collisions at 158 GeV per Nucleon
We present the first measurement of fluctuations from event to event in the
production of strange particles in collisions of heavy nuclei. The ratio of
charged kaons to charged pions is determined for individual central Pb+Pb
collisions. After accounting for the fluctuations due to detector resolution
and finite number statistics we derive an upper limit on genuine
non-statistical fluctuations, perhaps related to a first or second order QCD
phase transition. Such fluctuations are shown to be very small.Comment: 4 pages, 2 figure
Two-proton correlations from 158 AGeV Pb+Pb central collisions
The two-proton correlation function at midrapidity from Pb+Pb central
collisions at 158 AGeV has been measured by the NA49 experiment. The results
are compared to model predictions from static thermal Gaussian proton source
distributions and transport models RQMD and VENUS. An effective proton source
size is determined by minimizing CHI-square/ndf between the correlation
functions of the data and those calculated for the Gaussian sources, yielding
3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are
consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added
about the structure on the tail of the correlation function. The systematic
error is revised. To appear in Phys. Lett.
- …