26 research outputs found

    Seed Production

    Get PDF

    Diverse University Students Across the United States Reveal Promising Pathways to Hunter Recruitment and Retention

    Get PDF
    Declining participation in hunting, especially among young adult hunters, affects the ability of state and federal agencies to achieve goals for wildlife management and decreases revenue for conservation. For wildlife agencies hoping to engage diverse audiences in hunter recruitment, retention, and reactivation (R3) efforts, university settings provide unique advantages: they contain millions of young adults who are developmentally primed to explore new activities, and they cultivate a social atmosphere where new identities can flourish. From 2018 to 2020, we surveyed 17,203 undergraduate students at public universities across 22 states in the United States to explore R3 potential on college campuses and assess key demographic, social, and cognitive correlates of past and intended future hunting behavior. After weighting to account for demographic differences between our sample and the larger student population, 29% of students across all states had hunted in the past. Students with previous hunting experience were likely to be white, male, from rural areas or hunting families, and pursuing degrees related to natural resources. When we grouped students into 1 of 4 categories with respect to hunting (i.e., non-hunters [50%], potential hunters [22%], active hunters [26%], and lapsed hunters [3%]), comparisons revealed differences based on demographic attributes, beliefs, attitudes, and behaviors. Compared to active hunters, potential hunters were more likely to be females or racial and ethnic minorities, and less likely to experience social support for hunting. Potential hunters valued game meat and altruistic reasons for hunting, but they faced unique constraints due to lack of hunting knowledge and skills. Findings provide insights for marketing and programming designed to achieve R3 objectives with a focus on university students. © 2021 The Wildlife Society

    Variation of Agronomic Traits of Ravenna Grass and Its Potential as a Biomass Crop

    No full text
    Ravenna grass (Tripidium ravennae) is a tall robust bunchgrass with potential as an energy crop. The aim was to investigate the variation of agronomic traits of Ravenna grass. Univariate analyses of traits were conducted on 95 plants from 2013 to 2017. The traits were: biomass yield per plant; C, N, and ash concentrations; leaf and culm sap sucrose concentrations; percentage seed set, and the number of caryopses per panicle. In 2013, the biomass yield averaged 0.21 ± 0.09 kg per plant (mean ± the standard deviation). In 2014 to 2017, the yield averaged from 3.9 ± 0.8 kg per plant to 7.5 ± 1.8 kg per plant. Carbon concentration was generally higher than other energy crops, while N and ash concentrations were generally lower. Leaf sap sucrose ranged from 24.4 ± 4.6 g kg−1 in 2016 to 41.6 ± 7.6 g kg−1 in 2013. Culm sap sucrose varied from approximately 1.6 to 2.1 times that of leaf sap depending upon the harvest year. The percentage seed set varied between years ranging from 37.2 ± 12.4% to 56.6 ± 9.8%, and the mean number of caryopses per panicle varied from 4,770 ± 2,000 to 11,470 ± 3,075

    Seed Germination and Early Seedling Growth of Barley at Negative Water Potentials

    No full text
    The impacts of climate change may increase the duration and frequency of droughts, which would have deleterious effects on crop establishment. The objectives of this study were to determine the effects of moisture stress on seed germination and seedling growth of six winter barley (Hordeum vulgare) lines and discuss how the data are used to select plant materials for rapid germination. Twenty-five seeds of each line were germinated in water of potentials of −2.0, −1.6, −1.2, −0.8, −0.4, and 0 MPa for 4- and 7-days. The experimental design was a factorial arrangement of treatments (barley lines and water potential treatments) in a randomized block replicated four times and repeated twice. The 4- and 7-day percentage seed germination varied with line (p < 0.01), water potential treatment (p < 0.01), and line × treatment interactions (p < 0.01). The seed germination rate varied with water potential treatment (p < 0.01), and line × treatment interactions (p < 0.01). The data indicated that enough variation was present to effectively select and breed cultivars for improved germination at a negative water potential. Studying seed germination under moisture stress is the first step for developing an effected selection pressure for identifying plant materials with rapid seed germination

    Appendix A. List of species classified as "rarely grazed species" and hence not included in estimates of forage biomass.

    No full text
    List of species classified as "rarely grazed species" and hence not included in estimates of forage biomass

    Appendix C. Comparison of the daily energy balance of cattle foraging in the absence of black-tailed prairie dogs, vs. cattle foraging 50% of their time on prairie dog colonies and 50% of their time off prairie dog colonies.

    No full text
    Comparison of the daily energy balance of cattle foraging in the absence of black-tailed prairie dogs, vs. cattle foraging 50% of their time on prairie dog colonies and 50% of their time off prairie dog colonies

    Chemical Control of Sand Sagebrush: Implications for Lesser Prairie-Chicken Habitat

    No full text
    Traditional management of sand sagebrush (Artemisia filifolia) rangelands has emphasized sagebrush control to increase forage for livestock. Since the 1950s shrub removal has been primarily achieved with herbicides. Concerns over declining lesser prairie chicken (Tympanuchus pallidicinctus; LPC) populations have led to increased scrutiny over the use of herbicides to control shrubs. The objective of our research was to describe changes to LPC habitat qualities following chemical control of sand sagebrush in northwest Oklahoma. Study pastures ranged in size from 10 to 21 ha. Five pastures were sprayed with 2,4-dichlorophenoxyacetic acid (2,4-D) in 2003 (RECENT), five were sprayed with 2,4-D in 1984 (OLD), and four received no treatment (SAGE). We measured habitat structure (sagebrush cover, sagebrush density, visual obstruction [VO], and basal grass cover), and dietary resources (forb density, forb richness, and grasshopper density) in all pastures from 2003 to 2006. OLD and RECENT pastures had less sagebrush (cover and density) and VO than SAGE pastures. OLD pastures produced more annual forbs than either SAGE or RECENT pastures. SAGE pastures had more perennial forbs than RECENT pastures. Herbicide application reduced protective cover while providing no increase in forb abundance in RECENT pastures. Our results indicated that it may take several years to realize increases in annual forbs following application of 2,4-D. However, loss of protective cover may persist for multiple years (20+ yr), and removal of sagebrush did not increase forb richness or grasshopper abundance. Thus, 2,4-D may have limited use as a habitat management tool because it takes numerous years to reap the benefit of increased forb abundance while reducing habitat structure in the long term./El manejo tradicional de pastizales de artemisa (Artemisia filifolia) ha enfatizado el control de artemisa para aumentar el forraje para el ganado. Desde los 1950s la remoción de arbustivas ha sido lograda principalmente con herbicidas. La preocupación por la disminución de las poblaciones de gallinas de pradera (Tympanuchus pallidicinctus; LPC) ha llevado a aumentar la vigilancia sobre el uso de herbicidas para el control de arbustivas. El objetivo de nuestra investigación fue describir los cambios en la calidad del hábitat de LPC después de controles químicos de Artemisia filifolia en el noroeste de Oklahoma. Los potreros en estudio variaron en tamaño de 10 a 21 ha. Cinco potreros fueron asperjados con 2,4-acido diclorofenoxiacético (2,4-D) en 2003 (RECIENTE), otros cinco fueron asperjados con 2,4-D en 1984 (VIEJO) y cuatro no recibieron tratamiento (ARTEMISA). Medimos la estructura del hábitat (cobertura y densidad de artemisa, obstrucción visual [OV] y cobertura basal de pastos) y fuentes de dieta (densidad y riqueza de hierbas y densidad de chapulines) en todos los potreros de 2003 a 2006. Potreros VIEJO Y RECIENTE tuvieron menos artemisa (cobertura y densidad) y OV que los potreros ARTEMISA. Los porteros VIEJO produjeron más hierbas anuales los porteros ARTEMISA Y RECIENTE. Los potreros ARTEMISA tuvieron más hierbas perennes que los potreros RECIENTE. La aplicación de herbicida reduce la cubierta protectora mientras que no aumenta la abundancia de hierbas en los potreros RECIENTE. Nuestros resultados indican que puede tomar varios años el lograr incrementar las hierbas anuales después de la aplicación de 2,4-D. Sin embargo, la pérdida de cubierta protectora podrá mantenerse por múltiples años (20+ años) y el remover la artemisa no aumenta la riqueza de hierbas y abundancia de chapulines. Entonces, 2,4-D podrá tener uso limitado como herramienta de manejo de hábitat porque toma muchos años obtener el beneficio de aumentar la abundancia de hierbas mientras que se reduce la estructura del hábitat en el largo plazo.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202

    Data from: Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie

    No full text
    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through multiple direct and indirect pathways, such that the cumulative outcomes of these effects are difficult to predict. Here, we report on a 7-year study examining effects of CO2 enrichment (to 600 ppm) and infrared warming (+1.5°C day/3°C night) under realistic field conditions on forage quality and quantity in a semiarid, mixedgrass prairie. For the 3 dominant forage grasses, warming effects on in vitro dry matter digestibility (IVDMD) and tissue [N] were detected only in certain years, varied from negative to positive, and were relatively minor. In contrast, eCO2 substantially reduced IVDMD (2 most abundant grasses) and [N] (all 3 dominant grass species) in most years, except the two wettest years. Furthermore, eCO2 reduced IVDMD and [N] independent of warming effects. Reduced IVDMD with eCO2 was related both to reduced [N] and increased acid detergent fiber (ADF) content of grass tissues. For the 6 most abundant forage species (representing 96% of total forage production), combined warming+eCO2 increased forage production by 38% and reduced forage [N] by 13% relative to ambient climate. Although the absolute magnitude of the decline in IVDMD and [N] due to combined warming+eCO2 may seem small (e.g. from 63.3 to 61.1% IVDMD and 1.25 to 1.04% [N] for Pascopyrum smithii), such shifts could have substantial consequences for the rate at which ruminants gain weight during the primary growing season in the largest remaining rangeland ecosystem in North America. With forage production increases, declining forage quality could potentially be mitigated by adaptively increasing stocking rates, and through management such as prescribed burning, fertilization at low rates, and legume interseeding to enhance forage quality

    The Role of Renewable Energy Sources in Green Planning of Cities and Communities

    No full text
    Recent estimates suggest that cities account for about 70% of the global energy demand and thereby can be identified as key players to decarbonise the energy generation sector. Among the possibilities to face this challenge, the integration of renewable energy sources into the energy supply mix has a prominent role. Currently, many cities have drastically reduced their energy demand in all final uses and are even boosting a process of 100% energy transition to renewable energy sources. This goal is clearly ambitious not only from an economic point of view, but also even from the technical standpoint, meaning that this integration of renewables is not straightforward. Hence, an effort from academic researchers in order to develop proper methods and tools to support energy planning at urban scale as well as efforts from public services administrations to acquire a proactive role is desired. In this chapter, in order to provide insights into heterogeneous expertise involved in the sector, a framework on the renewables integration at city scale is outlined, highlighting the current main issues and challenges that are encountered, describing some selected experiences and investigating the possible technological solutions
    corecore