1,388 research outputs found

    Ultrathin oxides: bulk-oxide-like model surfaces or unique films?

    Full text link
    To better understand the electronic and chemical properties of wide-gap oxide surfaces at the atomic scale, experimental work has focused on epitaxial films on metal substrates. Recent findings show that these films are considerably thinner than previously thought. This raises doubts about the transferability of the results to surface properties of thicker films and bulk crystals. By means of density-functional theory and approximate GW corrections for the electronic spectra we demonstrate for three characteristic wide-gap oxides (silica, alumina, and hafnia) the influence of the substrate and highlight critical differences between the ultrathin films and surfaces of bulk materials. Our results imply that monolayer-thin oxide films have rather unique properties.Comment: 5 pages, 3 figures, accepted by PR

    Models of the water retention curve for soils with a fractal pore size distribution

    Get PDF
    The relationship between water content and water potential for a soil is termed its water retention curve. This basic hydraulic property is closely related to the soil pore size distribution, for which it serves as a conventional method of measurement. In this paper a general model of the water retention curve is derived for soil whose pore size distribution is fractal in the sense of the Mandelbrot number-size distribution. This model, which contains two adjustable parameters (the fractal dimension and the upper limiting value of the fractal porosity) is shown to include other fractal approaches to the water retention curve as special cases. Application of the general model to a number of published data sets covering a broad range of soil texture indicated that unique, independent values of the two adjustable parameters may be difficult to obtain by statistical analysis of water retention data for a given soil. Discrimination among different fractal approaches thus will require water retention data of high density and precision. (Résumé d'auteur

    Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    Get PDF
    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates

    Sistema de gerenciamento de informações laboratoriais Infolab.

    Get PDF
    Requisitos do sistema InfoLab. Principais funcionalidades do InfoLab. Resultados e trabalhos futuros.bitstream/item/76630/1/CNPTIA-COM.TEC.-3-99.pd

    Compromise Solution for Economic-Environmental Decisions in Agriculture

    Get PDF
    Least cost production versus the environmental on- and off-site erosion damage of agriculture is evaluated in a policy context for a major Corn Belt watershed. Compromise programming, previously utilized in firm-level multi-criteria decision making problems is applied to a regional agricultural production model with environmental policy goal trade-offs. The crop sector model allocates land, water, labor, capital, and commodity-program base acres to crop production. Production options include four conservation practices, three tillage methods, and several crop rotations. Crop yield and fertilizer levels are dependent upon erosion. Cropping options selected allow for both wind and water erosion. The vector of objectives include three minimization functions: current production cost, future value of productivity loss, and sediment damage. Vector optimization technique was used to generate the payoff matrix containing efficient but simultaneously unobtainable solutions. Given the ideal but infeasible solution vector we generated efficient solutions in the compromise subset corresponding to the L1. L2. and Loo metrics. Trade-off relations were developed using the noninferior set estimation technique

    Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Get PDF
    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs(+ )formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs(+ )within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs(+ )for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs(+ )and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output

    Mechanisms of goethite dissolution in the presence of desferrioxamine B and Suwannee River fulvic acid at pH 6.5

    Get PDF
    Siderophores are Fe3+ specific low MW chelating ligands secreted by microorganisms in response to Fe stress. Low MW organic acids such as oxalate have been shown to enhance siderophore mediated dissolution of Fe3+ oxides. However, the effect of fulvic acid presence on siderophore function remains unknown. We used batch dissolution experiments to investigate Fe release from goethite in the goethite-fulvic acid desferrioxamine B (goethite-SRFA-DFOB) ternary system. Experiments were conducted at pH 6.5 while varying reagent addition sequence. FTIR and UV-Vis spectroscopy were employed to characterise the Fe-DFOB, Fe-SRFA and DFOB–SRFA complexes. Iron released from goethite in the presence of SRFA alone was below detection limit. In the presence of both SRFA and DFOB, dissolved Fe increased with reaction time, presence of the DFOB-SRFA complex, and where SRFA was introduced prior to DFOB. FTIR data show that in the ternary system, Fe3+ is complexed primarily to oxygen of the DFOB hydroxamate group, whilst the carboxylate C=O of SRFA forms an electrostatic association with the terminal NH3+ of DFOB. We propose that SRFA sorbed to goethite lowers the net positive charge of the oxide surface, thus facilitating adsorption of cationic DFOB and subsequent Fe3+ chelation and release. Furthermore, the sorbed SRFA weakens Fe-O bonds at the goethite surface, increasing the population of kinetically labile Fe. This work demonstrates the positive, though indirect role of SRFA in increasing the bioavailability of Fe3+
    corecore