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The relationship between water content and water potential for a soil is termed

its water retention curve. Thrs basic hydrauhc property is closely related to the soil pore
size d1str1but1on for which it serves as a conventlonal meéthod of measurement. In this
paper a general model of the water retention curve is derived for soils whose pore size
distribution is fractal in the sense of the Mandelbrot number-size distribution. This model,
which contains two’ ad]ustable parametérs (the fractal dimension and the upper limiting
value of the' fractal porosity) is shown to include other fractal approaches to the water
retention curve as special cases. Application of the general model to a number of
published data sets covering a broad range of soil texture indicated that unique,
independent values of the two ad]ustable parameters may be difficult to obtain by
statistical analysis of water retention data for a given soil. Discrimination among different
fractal approaches thus will require water retention data of high dengity and. precision.

Introduction

It has long been recognized that the behavior of water in
soils depends on pore space geometry. Quantification of this
geometry by means of fractal concepts offers an opportunity to
relate s011 water propertres to soil structural pr operties. Fractal
objects exhrblt three defining attrrbutes similar structure over

-a range of length scales, intricate structure that is scale-
independent, and irregular structute that cannot be captured
entirely by classical (i.e., Euclidean) geometrical concepts, ne-
cessitating, for example, the use of a spatial dimension that is
not an mteger [Mandelbrot 1983; Falconer, 1990] Like the
mathematrcal objects in Euclidean geometry, circles, spheres,
squares or cubes, the objects in fractal geometry are idealiza-
tions that can only approximate the pore scale structures en-
countered in natural soils, but nonetheless ‘they are useful to
represent some of the inherent complexrty in‘these’ _porous
media. °

Recent efforts to apply fractal concepts to hydraulic phe-
nomena in soils haye sought new organizing prmcrples for
understandmg soil structure (see the review by van Damine
[1995]) Structural propertles (partlcle number-srze dlstnbu—
tions [Tyler and Wheatcmﬁ‘ 1989, 1992b; Wu et al., 1993], ag-
gregate number-size distributions [Perfect and Kay, 1991; Rieu
and Sposito, 1991a, b], pore size distributions [Friesen ‘and
Mikula, 1987; Bartoli ‘et al., 1991], aggregate density-sample
size relatlonshrps [Rzeu and Spgsito, 1991a, b; Young and Craw-
ford 1991], porosity [Katz and Thompson 1985; Ghilardi et al.,
1993] or pore-solid interfacial areas [Pfezfer and Avnir, 1983
van Damme and Ben Ohoud 1990]), when measured at differ-
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ent scales of resolution, often appear to be power law functions
of a relevant length scale. The exponent in these power laws
can be interpreted in terms of a fractal dimension which may
be related to fundamental soil structural characteristics. ‘
A basic soil hydrauhc property is the relationship between
water content and water potential, termed the water retention

“curve (or soil water characteristic). The water retention curve

is intimately related to the soil pore size distribution through a
standard method of measurement [Damelson and Sutherland,

'1986]. Since 'spil water content often i is found to be’ expressed
.empirically as a power law functlon of the water potential,

there is at hand an experimental exponent that may be mod-
eled or even predicted by a fractal dimension. Tyler and Wheat-
craft [1989 1990, 1992a] pioneered the search for this type of
interpretation, but ‘subsequent theoretical work by Rieu and
Sposito [1991a, b, c] has produced an apparently different con-
cept of the relationship between fractal d1mens1on and the

water retention curve. These two model approaches do not’

differ in the way they relate pore size distribution to the water
retention curve, since that is conventlonal [Danielson and Suth-
erland, 1986]. Both of the resulting expressmns for the water
retention curve may be used to estimate a fractal dimensjon,
and the question arises as to which approach is the more
appropriate for a given soil. In this paper an attempt is madé
to resolve the copundrum by deriving a general fractal model
of the pore size distribution that leads to an equafion for the
water retention curve that includes as special cases the results
of Tyler and Wheatcraft [1990] and Rieu and Sposito [19910 1. It
is shown that the difference between the two models lies in the
way fractal concepts are applied to represent real porous me-
dia. The new general equation is applied systematlcally toa
variety of data sets in order to shed light on current ambiguities
surrounding the apphcatron of fractal models to interpret soil

water behavioFonds Documentaire ORSTOM: -
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Derivation of the Model Water Retention Curve

Fractal Pore Size Distribution

Pfeifer and Avmr [1983; 1984] have suggested that any porous
medjum contalmng sohd particles with surfaces rough enough
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to he described by a fractal dimension D will exhibit a power
law pore size distribution:

dafv > 4]
——

o« eZ—D

©

where € is a measure of pore size (e.g., pore radius as deter-
mined by conventional intrusion porosimetry or water desorp-
tion methods [Danielson and Sutherland, 1986]) and [V > £] is
our notation for the volume of pores whaose size exceeds .
Pfeifey and Avnir 1983, 1984] derived (1) explicitly for a model
system of cylindrical pores but hypothesized that it should be
applicable to arbitrary pore shapes and extendable to Euclid-
ean spatial dimensions other than three [Pfezfer 1984; Pfeifer et
al., 1984]. The essential physical concept behind (1) is that a
fractal surface structure entails a power law pore size distribu-
"tion featuring a surface fractal dimension D.

Equation (1) is the definition of a fractal pore-size distribu-
tion adopted by Akl and Niemeyer [1989a, b] and that chosen by
Frieseri and Mikula [1987] and Bartoli et al. [1991] as their
starting point to estimate the fractal character of pore size
distributions based on experimental studies using intrusion
* porosimetry. Equat1on (1) also can be derived from the fractal
solid-pore interface model described by de Gennes [1985], as
well as from generic “lacunarity” models of porous media, in
which gaps or holes are created recursively within an initially
solid geometrical object under a constraint of self-similarity
[Riet and Perrier, 1996]. In this latter class of models, the
fractal dimension D does not necessarily connote surface
roughness.

Whether D in (1) in fact represents a surface fractal dimen-
sionor a volume fractal dimension thus remains a debated
question. Ghilardi et al. [1993] have denated by FSV (fractal
surface and volume) geometrical objects that may be inter-
preted both as surface and volume fractals having the same
dimension D. The Menger sponge has been shown to be an
F SV [Toledo et al., 1990; Ghilardi et al., 1993], but some fractal
surfaces can exhibit a divergent total area while enclosing a
nonfractal pore space or solid [Crawford et al., 1993]. Using
similar examples, Friesen and Mikula [1987] showed the theo-
retical independence of the fractal behavior of the bulk from
. that of the boundary of any geometrlcal object. They con-
cluded that measurement of a pore size distribution alone
cannot distinguish between a fractal surface and a fractal vol-
ume if the fractal dimension lies in the commonly observed
range 2 < D < 3. In the present study, (1) will be taken
simply as the defining equation for a fractal pore size distribu-
tion in three-dimensional space (in that it depicts quite gener-
ally a basic scaling feature common to previous models) with-
out assuming any particular geometrical structure for the
porous medium as a whole.

This heuristic perspective can be reinforced by a simple
derivation of (1) that generalizes those sketched by Pfeifer and
Avnir [1983] and Jullien and Botet [1987, section I11-4-3]. Man-
delbrot 1983, chapter 13] has stated that the cumulative size
distribution,

N (volume’® > ) = @)
should be of broad applicability to fractal objects of dimension
D embedded in a Euclidean space of dimension E. Falconer
+ [1990, chapter 3] has discussed the mathematical requirements
attendant to the Mandelbrot conjecture. Equation (2) is inter-
preted as giving the number of fractal objects whose size,

F)\° 0<D<E
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measured by-the Eth root of their Euclidean volume (strictly,
their E-dimensional measure) exceeds the value A > (. The
differential size distribution corresponding to (2) is the product
of dN/d A times the Buclidean volume (or measure), the latter
simply being proportional to AZ. If A is interpreted physically
as a pore radius €, the differential pore size distribution that
follows from (2) is, then, in the notation of (1),

B dlVv > €]

de = B(E — D)¢E-P!

0<D<E (3
where B is a positive constant related to F in (2).and to the
geometrical factor that connects volume (or measure) to €.
Equation (3) depends mathematically only on the Mandelbrot
conjecture. It is well known to be applicable to a wide variety
of “lacunar” fractal objects, including the Cantor dust (E = 1,
= 0.6309), the Sierpinski carpet (E = 2, D = 1.8928),
and the Menger sponge (E = 3, D.= 2. 7268) [Mandelbrot,
1983, pp. 80 and 144; Perrier, 1994].

Two-Parameter Model

Integration of (3) with respect to ¢ leads to an equation for
[V > £]:
V>4€1= -2+ ¥, 4
The constant of integration V;, (which was omitted in a similaf
integration presented by Ahl and Niemeyer [1989a]) can be
evaluated by imposing physical conditions on (4). Let €, be
the smallest pore size in the medium. Then [V > €, ] =Vp
is the total pore volume, by definition. When € = £, (4)
takes the form '

0<D<E

V= =Bl + V, (%)

and V), is seen to be equal to Vp as £, | 0. The definition;
[V><L]l+[V=L]l=V, (6)

can be applied to transform (4) into an alternative expression
for V, in terms of physical quantities:

=Vp+ BEEP - [V=¢] Lan=4L={Lux (7)
where £_,,, is the largest pore size in the medlum, i e, [v=
£ pax] = Vp according to (6). Thus

Vo= BeEy? (8)
follows from setting € = £, in (7).

In the conventional measurement of the soil pore size dis-
tribution by water desorption experiments [Danielson and
Sutherland, 1986], the water potential (or soil-water suction) is
assumed to be inversely proportional to an equivalent, pore
radius €. The largest pore radius, £,,,, corresponds to the very
small waterpotential 4, defined operationally by Danielson
and Sutherland [1986] as thét under which the soil remains
visibly saturated with water at equilibrium in a desorption
apparatus. The volumetric water content ,,,,, that is observed
when this saturation equilibrium condition is established. is
identified as the soil porosity. As the water potential is in-
creased, a smaller volumetric water content follows. In this
way, a pore radius—cumulative pore volume data set is created
[Danielson and Sutherland, 1986, Table 18-1]. This experimen-
tal methodology permits (6) to be rewritten in the alternate
form
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Table 1. Fractal Dimension D Obtained From Fitting Either (11) or (12) to Log-Transformed Water Retention Curves

Equation (11) Equation (12)

Porous Medium Reference Data Points D r? D r?
Ariana silty clay loam Rieu and Sposito [1991b}] 27 2.90 0.99 271 0.98
Berea sandstone Davis [1989] 9 2.99 0.98 2.55 0.99
Delhi sand Toledo et al. [1990] 4 2.97 0.98 259 . 099
Panoche loam Rieu and Sposito [1991c] 9 297 0.95 2.92 0.95
Yolo clay loam Rieu and Sposito [1991c] 9 295 0.999 2.87 0.997

measured water retention curves. We tested these two one-
parameter models on several data sets (Table 1) by classical
methods. Equation (13) was used [e.g., Riew and Sposito,
1991b] to determine the fractal dimension D from the slope of
a regression line fitted to (0, ) retention data by a log-log plot
of (h;./h) versus (8(h) + 1 — 6,,,,), whereas (12) was used
to determine the fractal dimension D from the slope of a
regression line fitted to a plot of log (%,,;,/h) versus log (9 (k)/
0.max) [€.8., Toledo et al., 1990)]. Expressions (12) and (13) both
were fit very well by linear regression (r* = 0.95), but they led
to quite different estimates of the fractal dimension D. This
discrepancy is especially striking, given the very small range of
fractal dimension [2.4, 3] calculated typically for soils in three-
dimensional Euclidean space.

Application to Experimental Water Retention
Data

Several theoretical studies [Tyler and Wheatcraft, 1990, To-
ledo et al., 1990] and numerical applications [Davis, 1989, To-
ledo et al., 1990; Brakensiek and Rawls, 1992; Rawls and Brak-
ensiek, 1995] have made fractal interpretations of (12). Indeed,
a good fit of this equation to experimental water retention data
should determine a fractal dimension D = 3 — Ag in three-

dimensional space. We reanalyzed the original data of Brooks.

and Corey. [1964] in which six experimental water retention
curves were studied. Similar results were obtained with each
data set. One example, Touchet silt loam, is presented in Fig-
uré 1 based on Brooks and Corey’s values of 8, and 4 ,,;,, which
they selected by trial and error. (Incorporation of a nonzero
residual water content 6, into (11) is straightforward, inciden-
tally, since 6, is simply subtracted from both sides of the equa-
tion.) In the original data fitting, 8, = 0.131, and the water

content corresponding t0 /., Was 8., = 0.485, leading to .

A = 8,,.— 9, = 0.354 in order to achieve consistency with
(12). The straight line through the data points in Figure 1a has
a slope equal to 1.83, implying D = 1.17. Figure 1b shows a
data fitting based on 4 = 0, = 0.485, yielding D = 2.06,
‘and Figure 1c shows a fitting for 4 = 1.0, 'yielding D = 2.66.
"It is evident that the estimated fractal dimension depends
strongly on the choice of 4 in the model water retention curve.

Data-fitting results for Ariana silty clay loam [Rieu and
Sposito, 1991c] are given in Figure 2. Figure 2a shows the
original least squares adjustment of (13) and the resulting
fractal dimension D = 2.90 estimated by Rieu and Sposito
[1991b], where A, = 0.22 m, measured at 6, = 0.46 m>
m~?, was assumed to be the smallest value of the water po-
tential. Figure 2b shows what would have been obtained if (12)
had been used instead, with 4 = 8. = 0.46. The estimated
value of D is 2.71. We then applied nonlinear regression anal-
ysis (SAS software, Newton or Marquardt optimization) to the

"data using (11) instead of (13) to search for optimal estimates

of A and D according to a least-squares criterion. For the
Ariana soil, with a numerical constraint imposed on4 (4 < 1),
several equally acceptable pairs of estimates were obtained:
(4 =0.57,D = 2.80), (4 = 0.65, D = 2.84), or (4 =
1, D = 2.90), the last of which of course corresponds to the
direct use of (13). No convergence to the pair (4 = 0.46 =
Opapy D = 2.71), which corresponds to (12), was found.
Without a constraint on the optimization process, convergence
was met using (11) for the pair (4 = 3.25, D = 2.97; Figure

(a) A=0.354(A = fpmaz; — 6,), D=117(A = 1.83)

0 T T A T T
:M Linear regression
3 AF 4 y=-0.003+1.831x
g R = 1.000
i
= -
-2 1 [} 1 1
-1 -05 0 05, 1
‘ 2 = log faen
(b) A=0.485 (A = fnuz), D=2.06( = 0.94)
0 oo o 1 T
Sl L .
< inear regression
3 05t 4 y=-0.062+0.939x
g R? = 0.985
it
= .
-1 ) )
-1 05 0 0.5 1
z = log b—%"*'
{c) A=1, D=2.66 (A = 0.34)
9)60 A . T
| I A Linear regression
3 4 y=-0.042+0.340x
g ‘R?=0.961
I
k=Y
1 1

0.5 1

z =log iﬂ,‘lﬂ-
Figure 1. Fits of (11) to the water retention curve of Touchet
silt loam [Brooks and Corey, 1964]: (a) A = 0, — 6, =
0.345, (0) A = 0,4, = 0485, () 4 = 1.0.
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2 L0 4 0) = ©)
T

where V- is the total volume of a soil sample, 6,,., = Vp/V1is
the soil porosity, and the dependence of pore radius € and
water content 6 on the water potential 4 has been noted ex-
plicitly. Equation (9) is a mathematical relationship between
the water retention curve € (7) and the soil pore size distribu-
tion [V > €(h)]/V, based only on (6) and a standard method
of determining pore size distributions.

If the soil pore size distribution is modeled as fractal, then

" (3) applies and its integrated form (4) can be introduced into

©):

—'B[f(h)]E"D

VT V + 9(}1) = emax

0<D<E (102)

Equation (8) can be applied to put the first two terms on'the
left side of (10a) into the form:

7 (10b)

‘ernax
Finally, given the inverse proportionality between £ (k) and h
and between €, and I i the ratio of pore sizes in (10b) can
be expressed as'a ratio of water potentials instead:

VO hmin E-D
-] ) rem = 0w 0<p<E
Equation (11) describes a water retention curve for any soil
with the fractal pore size distribution defined by (3). Given that
Omax @nd /iy, are always measured in a water desorption
experiment [Danielson and Sutherland, 1986], the only adjust-
able parameters in (11) are the fractal dimension D and the
ratio, Vy/V, hereinafter denoted by A for convenience in
applications. The parameter 4 is expected to lie in the range,

Onax =A =1, since V, is an upper bound on Vp as £, { 0.

max

Relation to Other Fractal Models

Equation (11) can be transformed to the Brooks-Corey form
[Brooks and Corey, 1964,

9@)=6m<%gM (12)

after equating A with 6,,,, and interpreting the parameters
A in and 3-D (ie., E = 3) in (11) to be respective correspon-
dents of the original Brooks-Corey parameters, /2, (“air-entry
suction”) and Az (“pore size distribution index™), with neglect
of any residual water content. A physical consequence of set-
ting O = A = Vo/Vy is that €, = 0 in (5), which is
consistent with ignoring the residual water content. The
Brooks-Corey model has been shown in many studies to pro-
vide a reasonably accurate representation of the water reten-
tion curve for soil water contents that are not close to that at
saturation of that at oven dryness (for reviews, see Milly [1987]
and Rossi and Nimmo [1994)). Brakensiek and Rawls [1992]
have tabulated the Brooks-Corey parameter Ag for 11 U.S.
Department of Agriculture textural classes based on measure-

‘ments made on 1323 soils in the United States. Geometric-

mean values of Ay for the textural classes ranged from 0.127
(silty clay) to 0.592 (sand). This range of Az corresponds to a
fractal dimension D, defined in three-dimensional space by

D =3 — Ap, that ranges from 2.873 for silty clay to 2.408 for
sand. .

Tylér and Wheatcraft [1990, 1992a] used the Sierpinski carpet
as a model for a fractal soil pore space, in effect thereby
mapping the three-dimensional soil pore network onto a plane.

Their model for the water retention curve is obtained from

(11) by setting E = 2 and 6,,,, = 4 = V/V; e, it is the
same as a Brooks-Corey equation applicable to two-dimen-
sional space. Thus Brakensiek and Rawls [1992], who applied
the two-dimensional model of Tyler and Wheatcraft [1990,
1992a], reported fractal dimensions that are smaller by 1.0 than
those given above for the case E = 3. -

Rieu and -Sposito [1991a, b, c] developed a “lacunarity”
model of an aggregated soil based on a space partition of the
solid initiator into N parts, which then are reduced by a factor
r to define N replicas of the initiator surrounded by gaps (or
holes). This process is repeated recursively, replacmg at each
iteration the N replicas by copies of the generator reduced by
the factor r. The resulting model equation for the water re-
tention curve can be derived from (11) by setting 4 = 1 with
E=3:

0(h) = Opoe — 1 + (he/B)*™®  0<D<3  (13)

Rieu and Sposito [1991b, c] tested (13) with experimental water
retention curve data for six soils whose texture varied from silty
clay to sand. They found excellent fits of (13) to the data, with
D values ranging from 2.758 (sand) to 2.986 (silty clay).
Equation (5) shows that the parameter 4 represents the
largest value possible for the fractal porosity, which is achieved
as € 4 0. Equation (13) implies further that this upper limit
of porosity is 1.0, which corresponds to an infinite number of
recursive steps in a lacunarity model [Perrier, 1994]. It is this
case that appears in the model of Rieu and.Sposito [1991a], but
the upper limit of porosity, 1.0, was not achieved because they
set £, = 0 in order to have their model represent the géom-
etry of both the pore space and the solid particles [see Rieu and

.Sposito, 1991a]. Equation (12), on the other hand, implies that *

the upper porosity limit is 6,,,,, not 1.0. This case appears in
the model of Tyler and Wheatcraft [1990], in which €., | 0,
allowing the upper limit of porosity to be achieved, so 6,5, = A.
Because infinitely small pores (i.e., £,,;, = 0) are assumed to
occur, the solid phase can vanish, leaving the fractal structure
to represent solely the pore space. Thus the fractal model of
Tyler and Wheatcraft [1990] describes only a pore size distribu-
tion, not the geometry of soil structure. In this paper we also do
not assume a particular geometrical soil structure but consider
only the implications of any fractal pore size distribution con-
sistent with (3)—and any such distribution may be represented
“geometrically” by the holes of a generalized Sierpinski carpet,
as done in the approach of Tyler and Wheatcraft [1990]. How-
ever, if we consider that this carpet can represent a real pore
size distribution only over a limited range of length scales, (i.e.,
€min # 0), the porosity 6., does not reach the upper limit 4
that would be achieved if £, ;,, = 0. In this case, 6,,,, <A, and
(12) no longer holds. Irrespective of the choice of £.;,, the
general equation that follows from (3) and (9) is (11).

The models proposed by Rieu and Sposito [1991a] and Tyler
and Wheatcraft [1990] thus do not differ as to the mathematical
object used, since the lacunarity model and the Sierpinski
carpet have identical fractal properties, but the two models do
not portray soil water properties in the same way. This impor-
tant conceptual difference between (12) and (13) can be illus-
trated quantitatively by using each equation to infer D from
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2c); but this result is quite unrealistic, given the physical inter-
pretation of A as a porosity!

The conclusion to be drawn from non-linear optimization
using (11) with all the data sets given in Table 1 (plus other sets
for the same soil series), is that. 4 and D are not independent
parameters: Given (A, Omax) aS the bounding point of the
fitting domain investigated, several pairs of attractors (4, D)
were found to be equivalent, and increasing both A and D
generally led to very good fits in terms of a least squares
criterion. The optimization actually converged uniquely only
for the data set used by Davis [1989], with a value of 4 slightly
larger than 6., (4 = 1.032 0,,,,) and a value of D (D =
2.72) larger than the value D = 2.55 estimated by Davis
[1987], who used (12). But, as in all other examples, the con-
fidence intervals for the estimated parameters were untenably
large (e.g., with the data of Davis [1987] we found [0.99 6,,.,,
1.07 6,,,] for A and [2.62, 2.82] for D). We tried also to
optimize (11) in a derivative form (d8/dh « h®~*), which is
analogous to an expression applied by Friesen and Mikula
[1987], but this also led to unacceptably large confidence in-
tervals for the estimates of D (e.g., D = 2.98 = 0.26 for the
Ariana soil), possibly because of a relative lack of precision in
water retention data by comparison to the mercury lntrusmn

data analyzed by Friesen and Mikula [1987]

Discussion

Estimation of the Fractal Dimension From Water Retention
Data

When either (12) or (13) is postulated as the appropriate
equation with which to model a soil water retention curve,
there is no difficulty in calculating fractal dimensions for many
soils [cf. Brakensiek and Rawls, 1992], even considering the
vicissitudes of log-log transforms and the sizes of the confi-
dence intervals for the estimated fractal dimension. However,
if no particular simplified form of (11) is assumed, it was found
to be far more difficult to estimate a unique value of D. None-
theless, (11), whether used in integral form or in a derivative
form, in principle should provide the means to discriminate
between (12) and (13), or any other particular model. Using
simulated water retention data, we have found that when good
log-log transform linear fits are obtained using (12), those
obtained using (13) are very poor [Perrier et al., 1995], and vice
versa [Perrier, 1994]. This last result suggests that more precise
and abundant experimental water retention data should help
to determine which fractal model is the more appropriate.

Young and Crawford [1991] published a critical review of
determinations of the fractal dimension based on (13) using
water retention data and noted that systematically lower esti-
mates of the fractal dimension resulted as compared to other
methods, such as aggregate bulk density-size measurements.
They suggested that this discrepancy may be the effect of an
incomplete representation of the pore space when pore net-
work connectivity is neglected. It must be stressed, however,
that the only evaluation method they used was the fitting of
water retention data to (13). Comparing the order of magni-
tude of published fractal dimensions, we can propose another
explanation: that use of (13) may produce an underestimation
of D, while using (12) may overestimate D. Intermediate val-
ues might result from a very careful use of (11).

3029
(a) A=1, D=2.90
Zv’ Linear regression
3 y=0.0074+0.104x
g R? =0.991
I
S
0
| - Linear regression
<l -0.5 - y=0.0554-0.290x
g R?=0.981
1
£
-1
-4
(c) A=3.25, D=2.97
0 ; T T
Z < . Linear regression
<l -0.05 | - y=0.0007+0.029x
g © R?=10992
! 3
_0.1 > 1 ] 1
-4 -3 -2 -1 0

z = log Ruin

Figure 2. Fits of (12) to the water retention curve of Ariana

silty clay loam [Rieu and Sposito, 1991b): (a) A = 1.0, (b)A4 = .

By = 0.46, (c) A = 3.25.

Prediction of the Water Retention Curve From the Fractal
Dimension

Fractal scaling of soil structural properties can help to in-
terpret the shape of the water retention curve in soils, in that
the fractal dimension D leads to an estimate of the exponent in
a power law function describing 6 (4). A powerful application
would be the prediction of this basic hydraulic property from
soil structural properties that are more easily measured and,
although it goes beyond the scope of this paper, the prediction
of the hydraulic conductivity [Riex and Sposito, 1991b, c; Shep-
ard, 1993; Rawls and Brakensiek, 1995]. A fundamental ques-
tion still remains: Which fractal dimension best describes the
water retention curve? The fractal dimension D is related to
the pore size distribution, whatever may be its geometric ori-
gin, assuming the conventional capillary model of the water
potential [Danielson and Sutherland, 1986, such that an equiv-

. alent pore-size distribution can be obtained from mercury in-

trusion or water retention data that are fit to power-law equa-
tions. Thus fractal geometry is, in effect, used only to rename

.an empirical exponent without specifying any physical concept

of soil structure. Another way to proceed would to be to make
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independent measurements of the pore size distribution from
an image analysis of soil thin sections, if the limitations of this
two-dimensional approach can be ovei‘come.

What may be even more useful is to determine a relation
between D and fractal dimensions that pertain to the solid
phase. These latter fractal dimensions are readily estimated
from scaling laws observed for the particle size or aggregate
size distribution as obtained by mechanical analysis [Tyler and
Wheatcraft, 1989, 1992a, b; Perfect and Kay, 1991; Rieu and
Sposito, 1991b, c; Wu et al., 1993]. In inost cases, fractal struc-
ture models do not make a theoretical connection between the
scaling behavior of soil pores and that of solid grains. Tyler and
Wheatcraft [1992b, p. 368] postulated ‘an: “intuitive” relation-
ship between fractal particle size distributions and fractal pore
size distributions but acknowledged that “a theoretical devel-
‘ opment.is not yet available”. Rieu and ;Sposito [1991b] showed
that their soil structure model can lead to a volume fractal
dimension, determined from aggregate density or mass mea-
surements, which is the same as that characterizing the pore
size distribution and the water retention curve as modeled by
(13). Agnese et al. [1994] successfully predicted the water re-
tention curve in this way based on a fractal analysis of the
aggregate density-size distribution of clayey aggregated soils.
Rieu and Sposito [1991b] discussed why partial destruction of
the soil structural organization as customarily performed prior
to mechanical analysis might lead to fractal aggregate number-
size distributions characterized by a somewhat smaller fractal
dimension than that for the undisturbed soil structure.

Concluding Remarks

A fractal analysis of the water retentlon curve cannot be
done without also analyzing the underlying fractal object in
respect to its geometrical interpretation. Thus only experi-
ments carried out to measure, on the same soil, both water
retention data and structural propertieS will enable progress to
occur in understanding the fractal nature of soils. Although
fractal objects provide idealized and simplified models of real
porous media, they do give valuable insight as to the geomet-
rical coherence that must underlie any attempt to relate fractal
dimensions corresponding to different physical definitions with
that describing water retention curves. For example, soils have
been found to be pore fractals [e.g., Katz and Thompson, 1985;
Ghilardi et al., 1993] on the basis of a fractal model that rep-
resents porous media conceptually in exactly the opposite way
to that presented in this paper; namely, the mathematical
model is a “lacunar” fractal object, but the gaps or holes
represent the solid grains instead of the pores. In this case, the
pore volume is fractal, but the pore ssize distribution is not
[Rieu and Perrier, 1996). Since no geometrical model offering a
realistic partition of a soil into pores: and solid grains is yet
available to relate a fractal pore volume to a fractal pore size
distribution, any attempt to use a pore fractal dimension to
predict a water retention curve in the form of (11) can succeed
only fortuitously.

Scale-invariant processes apply to a whole porous medium
structure, and the same scaling exponents may characterize
different parts of this structure [Hillel and Elrick, 1990]. Our
view is that these exponents are fundamental physical indica-
tors of soil water behavior, but that a fractal approach must
rely on geometrically consistent models. Geometrical models
whose scaling properties mimic those: encountered in natural
soils also may provide useful representatlons of soil structure

.qu‘
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organization. Hence it is possible to go beyond the mere illus-
tration of a fractal pore size distribution to take into account
the detailed connectivity of the soil pore network. Simulations
of random fractal soil structures [Perrier et al., 1995] have
shown that connectivity conditions have strong influence on
hydraulic properties, especially in respect to the well-known
hysteresis behavior of water retention curves. Further investi-
gation is necessary to evaluate the effect of hysteresis on fractal
analyses, which currently are based on the convenient assump-
tion of a one-to-one correspondence between the pore size
distribution and the water retention curve.
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