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Abstract  

An analytical theory is presented for the low-frequency behavior of dilatational waves 

propagating through a homogeneous elastic porous medium containing two immiscible fluids.  

The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure 

effects are neglected.  We show that the BTC model equations in the frequency domain can be 

transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph 

equation) and a propagating wave equation in the time domain.  These partial differential 

equations describe two independent modes of dilatational wave motion that are analogous to the 

Biot fast and slow compressional waves in a single-fluid system.  The equations can be solved 

analytically under a variety of initial and boundary conditions. 

The stipulation of “low frequency” underlying the derivation of our equations in the time 

domain is shown to require that the excitation frequency of wave motions be much smaller than a 

critical frequency.  This frequency is shown to be the inverse of an intrinsic time scale that 

depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic 

permeability of the porous medium.  Numerical calculations indicate that the critical frequency 

in both unconsolidated and consolidated materials containing water and a nonaqueous phase 

liquid ranges typically from kHz to MHz.  Thus engineering problems involving the dynamic 

response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave 

stimulation) should be accurately modeled by our equations after suitable initial and boundary 

conditions are imposed. 

 

Key words: dilatational waves, immiscible fluid flow, poroelastic behavior  
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1. Introduction 

The quantitative description of elastic wave propagation in a porous medium containing a 

single fluid is one of the classic problems in the physics of flow through porous materials [Biot, 

1956, 1962; Biot and Willis, 1957; Rice and Cleary, 1976; Chandler and Johnson, 1981; Dvorkin 

and Nur, 1993; Donskoy et al. 1997].  An extension of the theory to include the effects of two 

immiscible pore fluids on the behavior of elastic waves was proposed long ago by Brutsaert 

[Brutsaert, 1964; Brutsaert and Luthin, 1964] as a generalization of the seminal Biot [1962] 

poroelasticity model for a single-fluid system.  Notable among many others following this 

approach, Berryman et al. [1988] developed a general Lagrangian formulation of elastic wave 

behavior in unsaturated porous media under the assumption that the wave excitation is of long 

enough wavelength that the effects of capillary pressure changes are negligible.  This assumption 

allowed the two fluids in a porous medium to be represented by a single multiphase fluid whose 

material properties are volume-weighted averages of those of its components.  

All poroelasticity models feature partial differential equations that are coupled in the 

terms describing inertia, viscous damping, and applied stresses.  Decoupling of these equations 

into normal coordinates representing independent modes of wave motion is highly desirable for 

determining analytical solutions of boundary value problems.  An exact decoupling of the Biot 

[1962] model equations for a single-fluid system has been achieved in the frequency domain 

[Dutta and Ode, 1979; Berryman, 1983], with the two resulting complex-valued normal 

coordinates each found to satisfy a Helmholtz equation featuring complex frequency-dependent 

eigenvalues.  Chandler and Johnson [1981] demonstrated that, when inertial terms are neglected 

in the Biot model, decoupling also can be achieved in the time domain with two real-valued 

normal coordinates that satisfy a diffusion equation and a Laplace equation, respectively.  If 

inertial terms are included, decoupling with the Chandler-Johnson normal coordinates is still 

possible, but requires imposing a constraint relation between elasticity coefficients and inertial 

parameters in the Biot model [Lo et al., 2002].   

Berryman et al. [1988] decoupled their model equations for unsaturated porous media 

following the frequency-domain method used by Berryman [1983] for the single-fluid case.  

However, the resulting pair of Helmholtz equations cannot be converted directly to partial 

differential equations in the time domain.  Thus, closed-form analytical solutions of these 

equations in space and time variables cannot be obtained.  The aim of the present paper is to 
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show that the decoupled model equations of Berryman et al. [1988] in the frequency domain can 

in fact be converted directly to the time domain in a low-frequency limit that is consistent with 

neglect of capillary pressure changes.  Consistency is assured because the wavelength in this 

limit is large enough for the two fluids to experience the same pressure change under excitation 

of the porous medium [Berryman et al., 1988].   

The low-frequency decoupled equations, which apply to dilatational wave motions in an 

elastic porous medium containing two immiscible fluids, have the mathematical form of a 

dissipative wave equation (telegraph equation) and a propagating wave equation.  The precise 

definition of “low frequency” is established and shown to be equivalent to requiring the angular 

frequency of wave motions to be much smaller than a critical frequency cω  equal to the inverse 

of an intrinsic time scale in the two-fluid system.  Illustrative numerical calculations performed 

for unsaturated porous media containing water and a nonaqueous phase liquid (NAPL) indicate 

that cω  will lie typically in the kHz to MHz range.  Thus our decoupled equations should be 

applicable to acoustic wave phenomena at seismic frequencies in partially-saturated porous 

media [Li et al., 2001].  Interest in these phenomena is being stimulated as a consequence of 

their frequent appearance in problems of biomechanics [Cowin, 1999], geophysical exploration 

[Kearey et al., 2002], hydrocarbon extraction [Beresnev and Johnson, 1994; Kouznetsov et al., 

1998], groundwater remediation [Roberts et al., 2001], seabed stability [Mei and Foda, 1981], 

and soil consolidation [Lewis and Schrefler, 1998].  The key practical question to be addressed 

in these applications is how to describe acoustic wave motions as the relative content of each 

fluid changes. 

 

2. Model equations 

Using a Lagrangian variational approach, Berryman et al. [1988] derived a set of coupled 

partial differential equations that describe elastic wave propagation and attenuation through 

unsaturated porous media under the assumption that changes in capillary pressure have 

negligible effect on wave motions.  Lo et al. [2002] developed more general model equations 

based on the continuum theory of mixtures [Truesdell, 1984] that, under the same physical 

assumptions as made by Berryman et al. [1988], reproduced their model equations in the form:  
2 2 2

1 1 21 11 11 12
1 2 2 2 2 2

1 1 1 1 2

[ ]s
f

A R Au w w w p
t t t t

ρρ
θ θ θ θ θ

∂ ∂ ∂ ∂
+ − − − = −∇

∂ ∂ ∂ ∂

r ur ur ur
ur

,         (1.1) 
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2 2 2
2 2 12 22 22 21

2 2 2 2 2 2
2 2 2 1 2

[ ]s
f

A R Au w w w p
t t t t

ρρ
θ θ θ θ θ

∂ ∂ ∂ ∂
+ − − − = −∇

∂ ∂ ∂ ∂

r ur ur ur
ur

,         (1.2) 

2 2 2
1 2

1 22 2 2
su w w

t t t
ρ ρ ρ σ∂ ∂ ∂

+ + = ∇⋅
∂ ∂ ∂

r ur ur
ur

,            (1.3) 

where αρ  is the mass density of phase α; αθ  is its volume fraction, the subscript α designating 

the three immiscible phases:  wetting fluid (α = 1; fluid 1), non-wetting fluid (α = 2; fluid 2), and 

solid phase (α = s); α αρ ρ θ=∑ ; su
r

 and uξ

r
 (ξ =  1, 2) are displacement vectors for the solid 

and fluid phases, respectively; ( )sw u uξ ξξθ= −
ur r r

 refers to the displacement vector of fluid ξ  

relative to the solid phase; σ  is the total stress, i.e. the stress applied to the solid phase in the 

porous medium plus the stress acting on the fluids [Biot, 1962; Lo et al., 2002]; fp  is fluid 

pressure (the same for both fluids because of the assumption about capillary pressure changes); 

11A , 12A , 21A , and 22A  are constitutive coefficients related to inertial drag [Lo et al., 2002]; 11R  

and 22R  are constitutive coefficients pertinent to viscous drag [Gray, 1983; Lo et al., 2002].    

The viscous drag tensor element 
2

s r

R
k k
ξ ξ

ξξ
ξ

θ η
= − , i.e. each fluid flow obeys Darcy’s law [Garg and 

Nayfeh, 1986; Berryman et al., 1988; Santos et al., 1990], where ξη  is the dynamic viscosity of 

the fluid phase ξ, sk  is the intrinsic permeability of the porous medium, and rk ξ  is the relative 

permeability of the medium to fluid phase ξ.  Relative permeability, the ratio of the effective 

permeability to a fluid at a given value of saturation to the effective permeability to that fluid at 

full saturation, has values ranging between zero and one [Bear, 1988]. 

The assumption 12 21 0R R= =  has been imposed implicitly in (1) to reflect the common 

observation that cross-coupling caused by viscous drag can be ignored in two-phase flow 

through unsaturated porous media [Dullien, 1992].  This hydrodynamic phenomenon, known as 

the Yuster [1951] effect, has been debated extensively in the literature [Ehrlich, 1993].  Jerauld 

and Salter [1990] claimed that, despite the possibility that one fluid flowing in response to a 

pressure gradient could drag the other fluid into motion, little empirical evidence points to the 

importance of this hydrodynamic interaction.  It was concluded by Avraam and Payatakes [1995] 
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that the interaction is very difficult to isolate through macroscopic measurements and that it can 

be incorporated into the relative permeability, rk ξ .   

Following Biot [1962], we can express the stress-strain relations in an isotropic porous 

medium as:  

2 ( )cGe e Cσ λ ζ δ= + − ,            (2.1) 

δζδ )( MCep f +−= ,             (2.2) 

where the solid-phase strain tensor e  = 1 ( )
2

T
s su u∇ +∇

urr urr
, the superscript T denoting the transpose; 

δ  is a unit tensor; G is the shear modulus of the porous medium frame; C, M, and cλ  are elastic 

coefficients that can be expressed in terms of G, the porosity φ , and the bulk moduli of the 

porous medium frame bK , the multiphase interstitial fluid fK , and the solid grains sK  [Biot and 

Willis, 1957; Biot, 1962; Stoll, 1974; Johnson, 1986].  The variable ζ  is the linearized 

increment of fluid content as defined for a two-fluid system by Berryman et al. [1988]:  

[ ( )]su uξξ
ξ

ζ θ= −∇ ⋅ −∑
ur r r

,               (3) 

and the average fluid bulk modulus fK  is defined by the harmonic mean [Berryman et al., 1988]: 

1 2

1 2fK K K
θ θφ

= + ,                 (4) 

where 1K  and 2K  are the bulk moduli of fluid phases 1 and 2, respectively.  

Next we define the induced mass densities 1sρ  and 2sρ : 

1 11 1 1
1 2

1 1 1
s

Aρ α ρρ
θ θ θ

= − = ,            (5.1) 

2 22 2 2
2 2

2 2 2
s

Aρ α ρρ
θ θ θ

= − = .            (5.2) 

The quantities 1sρ  and 2sρ  reflect inertial drag interactions between the solid and fluid phases 

[Biot, 1956, 1962; Johnson, 1986; Berryman et al., 1988; Santos et al., 1990]; the parameters 1α  

and 2α  (which are always greater than 1) are tortuosity factors used to quantify the impedance to 

fluid flow that occurs when the fluids are accelerated [Biot, 1962; Stoll, 1974; Johnson, 1986].  
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Similarly, interactions of one pore fluid with another pore fluid lead to an inertial effect of 

importance in an unsaturated porous medium [Berryman et al., 1988; Santos et al., 1990], this 

coupling effect being represented by the induced mass densities: 

12
12

1 2

Aρ
θ θ

= ,              (6.1) 

21
21

1 2

Aρ
θ θ

= ,               (6.2) 

where 12 21ρ ρ=  [Berryman et al.,1988; Santos et al., 1990].  Finally, substituting (2) into (1), 

taking account of (5) and (6), then applying the divergence operation to both sides of the result, 

we obtain the set of coupled linear partial differential equations for a two-fluid system in the 

absence of changing capillary pressure: 
2 22

2 2 1 2 1
1 1 122 2 2

1

1
s

s

eC e M
t t t k b t

ζ ζ ζζ ρ ρ ρ∂ ∂ ∂∂
∇ − ∇ = + − +

∂ ∂ ∂ ∂
,         (7.1) 

2 22
2 2 1 2 2

2 21 22 2 2
2

1
s

s

eC e M
t t t k b t

ζ ζ ζζ ρ ρ ρ∂ ∂ ∂∂
∇ − ∇ = − + +

∂ ∂ ∂ ∂
,        (7.2) 

2 22
2 2 1 2

1 22 2 2

eH e C
t t t

ζ ζζ ρ ρ ρ∂ ∂∂
∇ − ∇ = + +

∂ ∂ ∂
,          (7.3) 

where 2cH Gλ= + , 11 wζ = ∇ ⋅
ur ur

, 22 wζ = ∇ ⋅
ur ur

.  The parameters 1
1

1

rkb
η

= , and 2
2

2

rkb
η

=  are termed 

the relative mobilities of the fluid phases 1 and 2, respectively [Lake, 1989; Lo et al., 2005]. 

 

3. Decoupling the model equations 

After postulating that the strain parameters e, 1ζ , and 2ζ  have a time dependence of the 

form of exp( )i tω− , Berryman et al. [1988] collapsed (7) into two coupled linear partial 

differential equations whose dependent variables are e and ζ , with decoupling accomplished 

subsequently.  Application of Fourier transformation [ 1( , ) ( , ) exp( )
2

f x t f x i t dω ω ω
π

∞

−∞

≡ −∫
r r

% ] to 

(7) leads to: 
2 2 2 2 2

1 1 1 12 2C e M e qζ ρ ω ω ζ ρ ω ζ∇ − ∇ + = − +% % %% % ,          (8.1) 

2 2 2 2 2
2 21 1 2 2C e M e qζ ρ ω ρ ω ζ ω ζ∇ − ∇ + = −% % %% % ,          (8.2) 
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2 2 2 2 2
1 1 2 2H e C eζ ρω ρ ω ζ ρ ω ζ∇ − ∇ + = − −% % %% % ,          (8.3) 

where 1 1
1

1
s

s

iq
k b

ρ
ω

= + , 2 2
2

1
s

s

iq
k b

ρ
ω

= + , and ω  is angular frequency.  Next let us express 

(8.1) and (8.2) in matrix form:  
2 2 2

1 1221 1
2 2 2

21 22 2

qC e M e
qC e M e
ρζ ρ ω ζ

ω
ρζ ρ ω ζ

⎡ ⎤ ⎡ ⎤−⎡ ⎤∇ − ∇ +
= −⎢ ⎥ ⎢ ⎥⎢ ⎥−∇ − ∇ + ⎣ ⎦⎣ ⎦ ⎣ ⎦

% %% %
% %% %

.           (9) 

Inverting the coefficient matrix on the right side of (9), we have  
2 2 2

2 1 21 1
1 2 1 22 2 2

2 1 2 2

( )
q r C e M e

q q r r
r q C e M e

ζ ρ ω ζ
ω

ζ ρ ω ζ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ∇ − ∇ +

= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇ − ∇ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

% %% %
% %% %

,         (10) 

where 1 12r ρ=  and 2 21r ρ= .  Combination of the two equations in (10) gives 

2 2 2 2
1 2 1 2 2 1 1 2 1 2( )( ) ( ) ( )s s C e M s s e q q r rζ ρ ρ ω ω ζ+ ∇ − ∇ + + = −% %% % ,        (11) 

with 1 1 1s q r= + , 2 2 2s q r= + , and 1 2( )ζ ζ ζ= − +% % % .  The definitions,  

2 1 2 2 12 1 2 1 1 21
1 21 2 2 1

1 21 2

1 2

1 1( ) ( )
( )

( ) [ ( ) ]

s s
s s

wu

x
s

i i
k b k bs s

b b is s
k b b

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ω ωρ ρρ

ρ
ω

+ + + + +
+

= =
++ +

,   (12.1) 

1 2 2 1 12 212 2
1 2 1 21 2 1 2

1 21 2

1 2

1 1 1 1
( )

( ) [ ( ) ]

s s s s
s s s

ww

x
s

i i
k b k b k b bq q r r

b b is s
k b b

ρ ρ ρ ρ ρ ρ
ω ω ωρ
ρ

ω

+ + − −
−

= =
++ +

,    (12.2) 

1 12 21 2x s sρ ρ ρ ρ ρ= + + + ,          (12.3) 

enable (11) to be reorganized compactly: 
2 2 2 ( ) 0wu wwC e M eζ ω ρ ρ ζ∇ − ∇ + − =% %% % .           (13) 

Now we multiply the first row in (10) by 1ρ  and the second row by 2ρ .  The result is:  

2 2 2
1 2 1 1 21 1 1

1 2 1 22 2 2
2 2 2 1 2 2 2

( )
q r C e M e

q q r r
r q C e M e

ρ ρ ζ ρ ω ρ ζ
ω

ρ ρ ζ ρ ω ρ ζ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ∇ − ∇ +

= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇ − ∇ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

% %% %
% %% %

.        (14) 

The two equations in (14) are then summed to yield 
2 2

2 1 1 1 2 2[( ) ( ) ]( )q r q r C e Mρ ρ ζ+ + + ∇ − ∇ %%  

2 2 2 2
2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2( ) ( )( )q r r q e q q r rρ ρ ρ ρ ρ ρ ω ω ρ ζ ρ ζ+ + + + = − − +% %% .      (15) 
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Replacing the term 2 2( )C e M ζ∇ − ∇ %%  in (15) from (11), we get 

2 21 2 1 2 1 2 2 1
2 1 1 1 2 2

1 2 1 2

( ) ( )[( ) ( ) ][ ]
( ) ( )

q q r r s sq r q r e
s s s s

ρ ρρ ρ ω ζ ω− +
+ + + −

+ +
% %  

2 2 2 2
2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 1 2 2( ) ( )( )q r r q e q q r rρ ρ ρ ρ ρ ρ ω ω ρ ζ ρ ζ+ + + + = − − +% %% .      (16) 

Or, after some algebra,  
2

2 1 1 1 2 2 1 2
1 1 2 2

1 2 1 2

( ) ( ) ( )( )
( ) ( )

q r q r e
s s s s
ρ ρ ρ ρρ ζ ρ ζ ζ+ + + −

+ = − −
+ +

% % % % .         (17) 

Finally, substitution of (17) into (8.3) yields the expression: 
2 2 2 ( ) 0uu uwH e C eζ ω ρ ρ ζ∇ − ∇ + − =% %% % ,           (18) 

where uuρ  and uwρ  are given by 

21 2
1 22

1 21 2

1 21 2

1 2

[ ( ) ] ( )
( )
( ) [ ( ) ]

x
s

uu

x
s

b b i
k b b

b b is s
k b b

ρ ρ ρ ρ
ωρ ρρ ρ

ρ
ω

+
+ − −

−
= − =

++ +
,      (19.1) 

2 1 1 1 2 2

1 2

( ) ( )
( )uw

q r q r
s s
ρ ρρ + + +

=
+

 

1 2 1 1 12 2 1 2 2 21
2 1

1 2

1 2

1 1( ) ( )

[ ( ) ]

s s
s s

x
s

i i
k b k b

b b i
k b b

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ω ω

ρ
ω

+ + + + +
=

+
+

.     (19.2) 

The transformed coupled equations, (13) and (18), can be written even more compactly as: 

2( ) 0
e

Bδ
ζ
⎡ ⎤

∇ + =⎢ ⎥
⎣ ⎦

%
% ,              (20) 

where 
b c

B
d f
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 with the matrix elements [Berryman et al., 1988]: 

2 1( )uu wub M Cω ρ ρ −= − ∆ ,          (21.1) 

2 1( )ww uwc C Mω ρ ρ −= − ∆ ,          (21.2) 

2 1( )uu wud C Hω ρ ρ −= − ∆ ,          (21.3) 

2 1( )ww uwf H Cω ρ ρ −= − ∆ ,          (21.4) 

2MH C∆ = − .            (21.5) 
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Decoupling of (20) is achieved by considering it as an eigenvalue problem for the matrix 

B .  The resulting complex-valued, frequency-dependent eigenvalues λ±  and eigenvectors ±Φ%  

are [Berryman et al., 1988]: 
1

2 21{( ) [( ) 4 ] }
2

b f b f cdλ± = + ± − + ,         (22.1)  

e ζ± ±Φ = Γ + %% ,            (22.2) 

where  
1

1 1 2 21( ) ( ) {( ) [( ) 4 ] }
2

d b f c b f b f cd
c

λ λ− −
± ± ±Γ = − = − = − ± − + .                (22.3)  

The decoupled partial differential equations in the frequency domain are then the Helmholtz 

equations: 
2( )( ) 0eλ ζ± ±∇ + Γ + =%% .             (23) 

 

4. Low-frequency limit 

Although Berryman et al. [1988] formally discussed the low-frequency behavior of the 

eigenvalues and eigenvectors in (23), the corresponding decoupled partial differential equations 

were neither presented explicitly nor considered in the time domain.  To examine (23) at low 

values of ω , we employ MacLaurin expansions of the coefficients ±Γ : 

2
0

0

( )d
dω

ω

ω ω
ω
+

+ + =
=

Γ
Γ ≈ Γ + +Ο  

21 2
1 1 2 2

1 1 2 2

( )[1 ] ( ) ( )
( ) s

b bCi k b b
H b b

ρ ρ ρ ω ω
ρ ρ

+
= − + +Ο

+
,                 (24.1) 

2
0

0

( )d
dω

ω

ω ω
ω
−

− − =
=

Γ
Γ ≈ Γ + +Ο   

21 2
1 1 2 22

1 1 2 2

( )[1 ] ( ) ( )
( ) s

b bH Ci k b b
C C H b b

ρ ρ ρ ω ω
ρ ρ

+∆
= − + − + +Ο

+
.                (24.2) 
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To zero-order in ω , 0+Γ ≈  and H
C−Γ ≈ − .  It follows that, to the same order in ω , we have 

uuρ ρ≈ , 1 1 2 2

1 2

( )
( )uw
b b
b b

ρ ρρ +
≈

+
, 1 1 2 2

1 2

( )
( )wu
b b
b b

ρ ρρ +
≈

+
, and 1 1 2 2

1 2 1 2

1
( ) ( )
s s

ww
s

b b i
b b k b b

ρ ρρ
ω

+
≈ +

+ +
 after 

expanding (12) and (19), with the consequence that the eigenvalues of the matrix B  become:  
2

1 1 2 2 1 1 2 2

1 2 1 2 1 2

( ) ( ) 1[ ]
( ) ( ) ( )
s s

s

b b b b if H C H
b b b b k b b

ρ ρ ρ ρωλ
ω+

+ +
≈ = − +

∆ + + +
,     (25.1) 

2

H
ρλ ω− ≈ .            (25.2) 

Thus the two Helmholtz equations in (23) can be rewritten as: 
2

2 1 1 2 2 1 1 2 2

1 2 1 2 1 2

( ) ( ) 1{ [ ]} 0
( ) ( ) ( )
s s

s

b b b b iH C H
b b b b k b b

ρ ρ ρ ρω ζ
ω

+ +
∇ + − + =

∆ + + +
% ,    (26.1) 

2 2( )( ) 0H e
H C
ρω ζ∇ + − =%% .          (26.2) 

The inverse relative mobility term 
1 2

1
b b+

 inside the square brackets in (26.1) can be interpreted 

physically as an effective dynamic shear viscosity 1 2

1 2 1 2 2 1

1
eff

r rb b k k
ηηη
η η

= =
+ +

 for a two-fluid 

system [Berryman et al., 1988; Lo et al., 2005]. 

The validity of (26) requires that the angular frequency ω  be very small.  A more precise 

statement of this requirement is possible after inspecting (24) and noting that the condition of 

low frequency is satisfied generally if the dimensionless product of ω  and 1 1 2 2( )sk b bρ ρ+  is 

much smaller than unity, i.e. 1 1 2 2( )sk b bρ ρ+ ω << 1.  [Typically the dimensionless term in square 

brackets in (24) is O(1) for both consolidated and unconsolidated porous media, and the 

dimensionless ratio 2 1
C
∆

< .]  The small dimensionless parameter in (24) that has been identified 

reveals an intrinsic time scale in our model equations (7): 

1 1 2 2 1 1 2 2 1 2( )s s sk b b k b k bτ ρ ρ ρ ρ τ τ= + = + = + , which is the sum of “damping time scales” for the 

two pore fluids.  The condition of very low frequency that underlies the derivation of (26) thus 
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requires the wave excitation frequency ω  to be much smaller than the inverse of the intrinsic 

time scale τ  ( 1ω
τ

).  

The time-domain representation of (26) can be deduced immediately after inverse Fourier 

transformation: 
2

2 1 1 1 1 2 2 2 2 1 1 2 2
2 2

1 2 1 2

( / ) ( / ) ( )1 [ ]
( ) ( ) ( )

b b b bH C
MH C b b b b t

α ρ θ α ρ θ ρ ρ ζζ + + ∂
∇ = −

− + + ∂
  

2( )
eff

s

H
MH C k t

η ζ∂
+

− ∂
,          (27.1) 

2
2

2( ) ( )H He e
C H t C

ρζ ζ∂
∇ − = −

∂
.         (27.2) 

These two partial differential equations are recognized as a dissipative wave equation (27.1) for 

the linearized increment of fluid content and a propagating wave equation (27.2) for the normal 

coordinate ( )H e
C

ζ− .  They describe independent modes of wave motion (“slow” and “fast” 

compressional waves, respectively) that exist on time scales which are long when compared to 

the intrinsic time scale τ .  Equation (27.2) is consistent with (125) in Berryman et al. [1988], 

which indicates that, in the low-frequency limit, the fast compressional wave in a two-fluid 

system propagates with speed 
1
2( )H

ρ
, thus generalizing the expression derived by Biot [1962] for 

the fast compressional wave in a porous medium containing a single fluid.  Comparing our 

results in (27.1) with those in Berryman et al. [1988], we find that, on expanding their function R 

in a MacLaurin series, the factor 1R  defined in their (119) actually equals zero because 

(1)
1 0wwf ρ= =  in their notation.  This means that the eigenvalue 2k−  in their (124) contains only ω  

and 2ω  to lowest order.  Therefore, the corresponding decoupled partial differential equation in 

the time domain must be a dissipative wave equation.  We note in passing that (27.1) is 

symmetric in the labeling of the fluids, a result of the neglect of capillary pressure changes which 

otherwise would serve to distinguish the fluids physically.  

The governing equations for compressional wave propagation and attenuation in single-

fluid and two-fluid systems have similar mathematical forms in the low-frequency limit.   The 
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decoupled Biot model equations for a fluid-saturated porous medium in this limit also take the 

form of a dissipative wave equation and a propagating wave equation [Lo et al., 2006]: 
2

2
2 2 2

1 ( )
( ) ( )

s f f
f

s

HH C
MH C t MH C k t

α ρ ηζ ζζ ρ
φ

∂ ∂
∇ = − +

− ∂ − ∂
,                           (28.1) 

2
2

2( ) ( )H He e
C H t C

ρζ ζ∂
∇ − = −

∂
.         (28.2) 

Comparison of (27) with (28) provides insight as to the physical behavior of dilatational wave 

motions in either saturated or unsaturated porous media.  One can see that, when a second fluid 

is present, the governing equations are formulated in terms of a single interstitial fluid having 

average properties of the two fluids [e.g. fK  in (4)].  For example, the coefficient of the first 

time-derivative in (27.1) contains the effective dynamic shear viscosity effη .  Similarly, in the 

coefficient of the second time-derivative in (27.1), the first term contains a relative mobility-

weighted average inertial coupling parameter, while the second term contains a relative mobility-

weighted average fluid density.   

 

5. Conditions for “low frequency” 

In order to illustrate the range of validity of (27), 1
cτ ω− =  was studied numerically as a 

function of water saturation 1S  ( 1θ
φ

= ) for two different unconsolidated porous media, one 

containing a LNAPL (light nonaqueous phase liquid), the other a DNAPL (dense nonaqueous 

phase liquid). 

 

5.1. Water-oil mixture in Columbia fine sandy loam  

Material properties necessary for determination of the value of cω  are listed in Table 1 

[Chen et al., 1999].  The van Genuchten [1980]-Mualem [1976] model was applied to evaluate 

the relative permeability of water and oil at different water volume fractions 1θ :  

1
2

1 1 1 1( ) ( ) {1 [1 ( ) ] }e e e mm
rk S S Sε= − − ,          (29.1) 

1
2

2 1 1 1( ) (1 ) [1 ( ) ]e e e mm
rk S S Sε= − − ,          (29.2) 
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1 1
1

1 1

r
e

s rS θ θ
θ θ

−
=

−
,              (29.3) 

where the quantities ε , m, 1
rθ , and 1

sθ  are model parameters obtained by fitting experimental 

data; 1
rθ  and 1

sθ  are the residual and saturated volume fractions of water; 1
eS  is the effective 

water saturation [van Genuchten, 1980].  The calculation of cω  begins by calculating the relative 

permeabilities 1rk  and 2rk  at a given 1S  using (29).  Next the “damping coefficients” 1b  and 2b  

are computed and, once they are known, the value of cω  is simply equal to 

1 2

1 1 2 2 1 1 2 2 2 1

1
( ) ( )

eff

s s r r sk b b k k k k
νηη

ρ ρ ρ η ρ η
= =

+ +
, where effν  is an effective kinematic shear viscosity 

defined analogously to effη  [Berryman et al., 1988].  Numerical results are given in Figure 1, 

which shows that cω  ≥ 1254 kHz, the value found at full water saturation.  A wave excitation 

frequency ω  then must be much smaller than 1254 kHz for (27) to be applicable to this system. 

 

5.2. Water-hydrofluoroether mixture in Toyoura sand 

One of the most common halogenated DNAPL contaminants in groundwater aquifers is 

trichloroethylene (TCE), which is used primarily as a solvent, both in metal-cleaning and in dry-

cleaning operations [Wartenberg et al., 2000].  In the absence of published data describing the 

dependence of relative permeability on water saturation for a porous medium containing TCE 

and water, we used experimental data published for water and hydrofluoroether (HFE-7100) in 

Toyoura sand [Kamon et al., 2003].  This DNAPL fluid has a dynamic viscosity (0.00058 

Ns/m2) and mass density (1520 kg/m3) very similar to those of TCE (viscosity = 0.00057 Ns/m2, 

mass density = 1480 kg/m3).  The fitting coefficient ε  in (29) was reported as 1/ 2  for (29.1) and 

1/ 3  for (29.2) by Kamon et al. [2003].  Table 2 lists material parameters for Toyoura sand and 

HFE-7100.  A graph of cω  as a function of water saturation is presented in Figure 2.  It can be 

seen that cω  ≥ 26 kHz, the value at the residual volume fraction of water.  This value is two 

orders of magnitude lower than that obtained for Columbia fine sandy loam containing oil and 

water. 
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5.3. Discussion 

The illustrative examples suggest that the minimum value of cω  is always the smaller of 

the values that occur at either 0 or 1 water saturation, i.e. the "end-member" values of the critical 

frequency are sufficient to determine the minimum critical frequency.  This trend can be 

demonstrated rigorously by expressing cω  in terms of the effective kinematic viscosity effν : 

1 eff
c

sk
νω

τ
= = .               (30) 

Equation (30) tells us that cω  has a minimum value when effν  is minimal.  Let us consider the 

two values of effν  corresponding respectively to full saturation for each fluid [although strictly, 

residual water still exists at full NAPL saturation, according to (29.3)].  When 1 1rk =  and 

2 0rk = , effν  is equal to 1ν .  By contrast, when 1 0rk =  and 2 1rk = , effν  is equal to 2ν .  At an 

arbitrary water saturation, if 1 2ν ν> , then 1 2 1 2 1 2

1 2 2 2 2 2

1 1r r r r r r

eff

k k k k k k
ν ν ν ν ν ν ν

+
= + < + = ≤ , since 

1 2 1r rk k+ ≤ .  Thus, under the condition 1 2ν ν> , 2ν  is the minimum value of effν .  In the opposite 

case, 2 1ν ν> , we can verify that 1ν  is the minimum value of effν  in a similar way.  

This line of reasoning leads to the general conclusion that the fluid with the smaller 

kinematic viscosity will yield the minimum effν , leading to the minimum cω  for a given porous 

medium.  Hence, the minimum critical frequency is simply: 

(min) i
c

sk
νω = ,               (31) 

where the subscript i denotes the fluid which has the smaller kinematic shear viscosity.  Now we 

can find (min)cω  for an unsaturated porous medium without having to calculate values of cω  

over the whole range of water saturation.  For example, a water-oil mixture in Massilon 

sandstone ( -13 29 10 msk = × ) or Lost Hills diatomite ( -13 23 10 msk = × ), two consolidated porous 

media of relevance to enhanced oil recovery, yields cω  ≥ 1114 kHz and cω  ≥ 3343 kHz, 

respectively, each value corresponding to full water saturation because the kinematic shear  

viscosity of water is smaller than that of oil. 
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6. Conclusions 

We have found the exact low-frequency limit in the time domain for the decoupled partial 

differential equations derived by Berryman et al. [1988] in the frequency domain to describe 

dilatational wave propagation with negligible capillary pressure change in an elastic porous 

medium containing two immiscible fluids.  In this limit, the decoupled equations can be reduced 

to a propagating wave equation and a dissipative wave equation (telegraph equation) 

representing two independent modes of dilatational wave motion.  These modes for a two-fluid 

system are analogous respectively to the well known “fast” and “slow” compressional waves that 

occur in an elastic porous medium containing a single fluid [Biot, 1962; Stoll, 1974; Johnson, 

1986].  Their existence is assured for all dilatational waves whose excitation frequency is very 

small when compared to the inverse of the sum of “damping time scales” for the two fluids: 

1 2
s

eff

kτ τ τ
ν

= + = .  The parameter τ  is an intrinsic time scale for the two-fluid system.  

Numerical calculations were performed to determine the magnitude of 1
cτ ω− ≡  for 

representative LNAPL-water and DNAPL-water mixtures in unconsolidated sediments, the main 

geological materials in shallow aquifers.  It was found that cω  was typically in the kHz-MHz 

range, depending on the material properties of the two-fluid system.  Generalizing these results, 

we showed that the minimum value of cω  always occurs at zero (or residual) water saturation for 

NAPLs whose kinematic viscosity is smaller than that of water (e.g. TCE) and at full water 

saturation for NAPLs whose kinematic viscosity is larger than that of water (e.g. oil).  For 

example, the minimum cω  value is in the MHz range for water-oil mixtures in representative 

consolidated porous media and is determined solely by the kinematic viscosity of water and the 

permeability of the material.  These values are well above the frequency range of interest in a 

number of engineering applications, e.g. seismic wave stimulation technology (1-250 Hz) used 

for the remediation of contaminated groundwater [Roberts et al., 2002] and enhanced oil 

recovery [Kouznetsov et al., 1998].  Therefore, the decoupled partial differential equations in 

(27) should be accurate for modeling elastic wave motions in a porous medium under low-

frequency seismic stimulation, after appropriate initial and boundary conditions are imposed. 
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Table 1 Material parameters for Columbia fine sandy loam saturated by an oil – water mixture 

[Chen et al., 1999] 

 
Input parameter Notation Value Selected 

Fitting parameter m 0.5090 

Fitting parameter ε  0.5 

Mass density of oil 2ρ  762 kg/m3 

Mass density of water 
1ρ  997 kg/m3 

Permeability sk  8×10-13 m2 

Porosity φ 0.45 

Residual water volume fraction 1
rθ  0.0723 

Saturated water volume fraction 1
sθ  0.45 

Viscosity of oil 2η  0.00144 Ns/m2 

Viscosity of water 1η  0.001 Ns/m2 
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Table 2 Material parameters for Toyoura sand saturated by a HFE-7100 – water mixture [Kamon 

et al., 2003] 

 
Input parameter Notation Value Selected 

Fitting parameter m 0.726 

Fitting parameter ε  0.5 or 1/3 

Mass density of HFE-7100 2ρ  1520 kg/m3 

Mass density of water 
1ρ  997 kg/m3 

Permeability sk  1.4825 ×10-11 m2 

Porosity φ 0.38 

Residual water volume fraction  1
rθ   0.0532 

 Saturated water volume fraction 1
sθ  0.38 

Viscosity of HFE-7100 2η  0.00058 Ns/m2 

Viscosity of water 1η  0.001 Ns/m2 
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Figure 1 Graph of cω  versus water saturation for Columbia fine sandy loam containing an oil - 
water mixture 
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Figure 2 Graph of cω  versus water saturation for Toyoura sand containing a HFE-7100 – water 
mixture  
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