555 research outputs found

    The Actual Future is Open

    Get PDF
    Open futurism is the indeterministic position according to which the future is \u2018open\u2019, i.e., there is now no fact of the matter as to what future contingent events will actually obtain. Many open futurists hold a branching conception of time, in which a variety of possible futures exist. This paper introduces two challenges to branching-time open futurism, which are similar in spirit to a challenge posed by Fine to (standard) tense realism. The paper argues that, to address the new challenges, (branching-time) open futurists must (1) adopt an objective, non-perspectival notion of actuality and (2) subscribe to an A-theoretic, dynamic conception of reality. Moreover, given a natural understanding of \u201cactual future\u201d, (3) it is perfectly sensible for open futurists to hold that a unique, objectively actual future exists, contrary to a common assumption in the current debate. The paper also contends that recognising the existence of a unique actual future helps open futurists to avoid potential misconceptions

    H2_2 [Pt(C2_2O4_4)2_2] as a Tailor‐made Halide‐free Precursor for the Preparation of Diesel Oxidation Catalysts: Nanoparticles Formation, Thermal Stability and Catalytic Performance

    Get PDF
    The aim of this study was to investigate a tailor-made metal precursor and its chemical properties to tune the properties of supported metal nanoparticles (NPs) and their catalytic performance when used as Diesel Oxidation Catalyst (DOC). The formation of extremely small Pt NPs from a new halide-free Pt complex was investigated, namely bis(oxalato)platinate, H2_2 [Pt(C2_2O4_4)2_2]. The size evolution of the supported NPs, from the formation upon the Pt precursor decomposition on γ-alumina to the sintering of the NPs at high temperatures, was followed by thermogravimetric analysis coupled with mass spectrometry (TG-MS) and differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. A correlation between the NPs’ size of the catalyst and the performance for the CO, C3_3H6_6, C3_3H8_8 and NO oxidation reactions pointed out a retained activity during test cycles, showing low sensitivity to the test conditions applied (i. e., temperature and gas composition). The overall catalytic performance was better in the fresh catalysts compared to the reference catalyst prepared from platinum nitrate, Pt(NO3_3)4_4. In particular, the different dispersion of the Pt NPs over the support obtained from the two precursors was identified as the reason for the different catalytic performance, retaining small NPs size after the tests cycles

    Statistical features of edge turbulence in RFX-mod from Gas Puffing Imaging

    Get PDF
    Plasma density fluctuations in the edge plasma of the RFX-mod device are measured through the Gas Puffing Imaging Diagnostics. Statistical features of the signal are quantified in terms of the Probability Distribution Function (PDF), and computed for several kinds of discharges. The PDFs from discharges without particular control methods are found to be adequately described by a Gamma function, consistently with the recent results by Graves et al [J.P. Graves, et al, Plasma Phys. Control. Fusion 47, L1 (2005)]. On the other hand, pulses with external methods for plasma control feature modified PDFs. A first empirical analysis suggests that they may be interpolated through a linear combination of simple functions. An inspection of the literature shows that this kind of PDFs is common to other devices as well, and has been suggested to be due to the simultaneous presence of different mechanisms driving respectively coherent bursts and gaussian background turbulence. An attempt is made to relate differences in the PDFs to plasma conditions such as the local shift of the plasma column. A simple phenomenological model to interpret the nature of the PDF and assign a meaning to its parameters is also developed.Comment: 27 pages. Published in PPC

    Pattern and determinants of hospitalization during heat waves: an ecologic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have investigated mortality during a heatwave, while few have quantified heat associated morbidity. Our aim was to investigate the relationship between hospital admissions and intensity, duration and timing of heatwave across the summer months.</p> <p>Methods</p> <p>The study area (Veneto Region, Italy) holds 4577408 inhabitants (on January 1<sup>st</sup>, 2003), and is subdivided in seven provinces with 60 hospitals and about 20000 beds for acute care. Five consecutive heatwaves (three or more consecutive days with Humidex above 40°C) occurred during summer 2002 and 2003 in the region. From the regional computerized archive of hospital discharge records, we extracted the daily count of hospital admissions for people aged ≥75, from June 1 through August 31 in 2002 and 2003. Among people aged over 74 years, daily hospital admissions for disorders of fluid and electrolyte balance, acute renal failure, and heat stroke (grouped in a single nosologic entity, heat diseases, HD), respiratory diseases (RD), circulatory diseases (CD), and a reference category chosen a priori (fractures of the femur, FF) were independently analyzed by Generalized Estimating Equations.</p> <p>Results</p> <p>Heatwave duration, not intensity, increased the risk of hospital admissions for HD and RD by, respectively, 16% (p < .0001) and 5% (p < .0001) with each additional day of heatwave duration. At least four consecutive hot humid days were required to observe a major increase in hospital admissions, the excesses being more than twofold for HD (p < .0001) and about 50% for RD (p < .0001). Hospital admissions for HD peaked equally at the first heatwave (early June) and last heatwave (August) in 2004 as did RD. No correlation was found for FF or CD admissions.</p> <p>Conclusion</p> <p>The first four days of an heatwave had only minor effects, thus supporting heat health systems where alerts are based on duration of hot humid days. Although the finding is based on a single late summer heatwave, adaptations to extreme temperature in late summer seem to be unlikely.</p

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    Electromagnetic turbulent structures: A ubiquitous feature of the edge region of toroidal plasma configurations

    Get PDF
    Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E x B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features

    Gamma-ray Tracking with Segmented HPGe Detectors

    Get PDF
    This paper gives a brief overview of the technical progress that can be achieved with the newly available segmented HPGe detectors. Gamma-ray tracking detectors are a new generation of HPGe detectors which are currently being developed to improve significantly the efficiency and resolving power of the 4 … germanium detectors arrays for high-precision ∞-ray spectroscopy. They consist of highly segmented HPGe detectors associated with fast digital front-end electronics. Through the pulse-shape analysis of the signals it is possible to extract the energy, timing and spatial information on the few interactions a ∞-ray undergoes in the HPGe detector. The tracks of the ∞-rays in the HPGe detector can then be reconstructed in three dimensions based on the Compton scattering formula. Such a detector has been used for the first time during an in-beam experiment. The ∞-decay of the Coulomb excitation of a 56 Fe nucleus was measured with the highly segmented MARS prototype positioned at 135 degree. The energy resolution has been improved by a factor of 3 as compared to standard HPGe detectors due to very precise Doppler correction based on knowledge of the ∞-ray track. I Introduction The future facilities for radioactive beams will allow, for the first time, the exploration of a new large area of the nuclear landscape. In connection with the study of the ∞-radiation, it is important to point out that the intensity of such radioactive beams is expected to be much smaller than that of stable beams, Doppler Effects in many experiments are expected to be much stronger and an intense background of X-rays could be present. Consequently, a new generation of powerful HPGe arrays with segmented detectors is being designed. Both in USA and in Europe several projects, based on segmented HPGe detectors, have already started and are in an advanced status of realization. The objective of the more recent R&D efforts is to improve the total efficiency by removing the BGO shields without affecting the P/T ratio with the use of the tracking technique, namely the reconstruction of the ∞-ray path to identify the ∞-incident direction (for the Doppler correction), the removal of the background and to check whether or not the ∞ was fully absorbed in the array. Such development implies unprecedented R&D efforts where completely new technology has to be applied, tested or developed in all the constituents of an HPGe array, from the detector to the front-end electronics. The typical feature of the energy deposition of a ∞-ray is that of interacting in a limited number of positions. ∞-tracking of this hits is a very challenging and ambitious task. First, one has to identify, isolate and localize each hit inside a segmented detector with pulse shape analysis based on the study of the physical mechanism of the pulse generation or with Artificial Intelligence techniques (like Neural Networks or Genetic Algorithm [1]) of the direct and induced electrical pulses produced by every interacting ∞-rays. Second, a tracking algorithm has to reconstruct the real trajectory from the list of interaction points through statistical techniques. The result is expected to be the complete reconstruction of the track of the incident ∞, namely the complete description of the interacting ∞-ray. Worldwide efforts have been done using simulations and proof-of-principle measurements and turned out to be successful. The feasibility of the entire process of ∞ray tracking is demonstrated in this paper based on an experiment, done at the LNL in Italy, using the MARS prototype detector

    The plasma boundary in Single Helical Axis RFP plasmas

    Full text link
    Single Helical Axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas display, aside from a dominant mode in the m=1 spectrum, also a dominant m=0 mode, with the same toroidal mode number as the m=1 one. The two modes have a fixed phase relationship. The island chain created by the m=0 mode across the reversal surface gives rise, at shallow reversal of the toroidal field, to an X-point structure which separates the last closed flux surface from the first wall, creating a divertor-like configuration. The plasma-wall interaction is found to be related to the connection length of the field lines intercepting the wall, which displays a pattern modulated by the dominant mode toroidal periodicity. This configuration, which occurs only for shallow toroidal field reversal, could be exploited to realize an island divertor in analogy to stellarators.Comment: 12 pages, 9 figures Submitted to Nuclear Fusio
    corecore