413 research outputs found

    Non intrusive polynomial chaos-based stochastic macromodeling of multiport systems

    Get PDF
    We present a novel technique to efficiently perform the variability analysis of electromagnetic systems. The proposed method calculates a Polynomial Chaos-based macromodel of the system transfer function that includes its statistical properties. The combination of a non-intrusive Polynomial Chaos approach with the Vector Fitting algorithm allows to describe the system variability features with accuracy and efficiency. The results of the variability analysis performed with the proposed method are verified by means of comparison with respect to the standard Monte Carlo analysis

    Time-domain parametric sensitivity analysis of multiconductor transmission lines

    Get PDF
    We present a new parametric macromodeling technique for lossy and dispersive multiconductor transmission lines (MTLs). This technique can handle design parameters, such as substrate or geometrical layout features, and provide time-domain sensitivity information for voltage and currents at the ports of the lines. It is based on a recently introduced spectral approach for the analysis of lossy and dispersive MTLs [1], [2] and it is suited to generate state-space models and synthesize equivalent circuits, which can be easily embedded into conventional SPICE-like solvers. Parametric macromodels which provide sensitivity information are well suited for design space exploration, design optimization and crosstalk analysis. A numerical example validates the proposed approach in both frequency and time domain

    Time-domain green's function-based parametric sensitivity analysis of multiconductor transmission lines

    Get PDF
    We present a new parametric macromodeling technique for lossy and dispersive multiconductor transmission lines. This technique can handle multiple design parameters, such as substrate or geometrical layout features, and provide time-domain sensitivity information for voltages and currents at the ports of the lines. It is derived from the dyadic Green's function of the 1-D wave propagation problem. The rational nature of the Green's function permits the generation of a time-domain macromodel for the computation of transient voltage and current sensitivities with respect to both electrical and physical parameters, completely avoiding similarity transformation, and it is suited to generate state-space models and synthesize equivalent circuits, which can be easily embedded into conventional SPICE-like solvers. Parametric macromodels that provide sensitivity information are well suited for design space exploration, design optimization, and crosstalk analysis. Two numerical examples validate the proposed approach in both frequency and time-domain

    Stochastic macromodeling for hierarchical uncertainty quantification of nonlinear electronic systems

    Get PDF
    A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology

    PROCESSO EDILIZIO E STIMA DEI COSTI

    Get PDF
    Special insert DOI:http://dx.medra.org/10.19254/LaborEst.11.I
    • …
    corecore