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Abstract— A novel technique for the variability analysis of
generic multiport systems (e.g. interconnections, filters, connec-
tors) is presented. The proposed method describes the statistical
properties of a multiport system using the Polynomial Chaos
expansion, starting from a set of univariate macromodels of
the system transfer function. A numerical example shows the
accuracy and efficiency of the proposed approach with respect
to standard Monte Carlo analysis.

I. INTRODUCTION

The increasing demand for performance and miniaturization
of the modern integrated circuits have reduced the size and
increased the density of these systems, while pushing operation
to higher signal bandwidths. Therefore, it is fundamental
to estimate the effects of the variability of geometrical and
electrical parameters on the integrated circuit performance.

The Monte Carlo (MC) method is the standard approach for
variability analysis. It gives accurate results and its implemen-
tation is straightforward, but it has a very high computational
cost, because the MC method requires a large number of
simulations. Over the last years, several techniques were de-
veloped to study the stochastic variations of electrical circuits
by means of the Polynomial Chaos (PC) expansion [1]–
[4], PC-based methods are much more efficient with respect
to the computationally cumbersome MC-based techniques.
These PC-based techniques were designed to handle specific
systems: multiconductor transmission lines [5], [6] and lumped
elements circuits [7].

The proposed method overcomes these limitations and al-
lows to perform variability analysis on a generic multiport sys-
tem, described by its linear transfer function. In the frequency-
domain, the system transfer function can be expressed in
different forms (e.g. scattering, impedance or admittance pa-
rameters), making the proposed method applicable to a large
range of microwave systems.

II. POLYNOMIAL CHAOS CHARACTERISTICS

A stochastic process Y , under specific conditions [1], can
be expressed as a series of orthogonal polynomials as [2]

Y =
∞∑

i=0

αiϕi(ξ) (1)

where ϕi(ξ) are the corresponding orthogonal polynomials,
also called basis functions, that depend on the vector of
normalized random variables (RVs) ξ and the terms αi are
called PC coefficients. The polynomials satisfy the following
orthogonality condition [3]

< ϕi(ξ), ϕj(ξ) >=
∫
Ω

ϕi(ξ)ϕj(ξ)W (ξ)dξ = aiδij (2)

where ai are positive numbers, δij is the Kronecker delta
and W (ξ), often referred as weighting function in the theory
of orthogonal polynomials [1], is a probability measure with
support Ω.

Let us suppose in what follows that the RVs of the stochastic
process Y are independent: the global uncertainty probability
density function (PDF) is the product of the PDFs of the single
RVs. In this case, the weighting function is

W (ξ) =
N∏

i=1

Wi(ξi) (3)

where N is the number of RVs. Therefore, a product combi-
nation of the orthogonal polynomials corresponding to each
individual RV ξi can be used to obtain the basis functions
ϕi(ξ) [4]. Consequently, it is possible to truncate (1) to a
limited number of basic functions M as [2]

M + 1 =
(N + P )!

N !P !
(4)

where P is the highest degree of the polynomials used in the
truncated PC expansion.

The basis functions can be calculated numerically for in-
dependent RVs with arbitrary PDFs, following the approach
described in [3], but for specific PDFs the basis functions
are the polynomials of the Wiener-Askey scheme [1]. For
example, in the case of RVs with uniform PDFs the basis
functions are the Legendre polynomial, while in the Gaussian
PDF case the basis functions are the Hermite polynomials.
Finally, (1) can be expressed as

Y ≈
M∑
i=0

αiϕi(ξ) (5)
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where only the M + 1 PC coefficients αi must be computed.
The PC expansion has an attractive characteristic: the an-

alytical representation of the system variability. Indeed, the
mean µ and the variance σ2 of the stochastic process Y can
be expressed as [2]

µ = α0 (6)

σ2 =
M∑
i=1

α2
i < ϕi(ξ), ϕi(ξ) > (7)

Furthermore, following standard analytical formulas or numer-
ical schemes [8], it is possible to calculate also more general
stochastic functions of Y , such as the PDF.

We note that it is straightforward to express a stochastic
process in a matrix form Y by means of the PC expansion:
the corresponding PC coefficients must be calculated for each
entry of Y . Hence, (5) can be recast as

Y ≈
M∑
i=0

αiϕi(ξ) (8)

where αi is the matrix of PC coefficients for the i-th polyno-
mial basis.

III. PC MODEL OF MULTIPORT SYSTEMS

The premise of this work is that the linear transfer function
of a multiport system is expressed in a state-space form as

(sI − A(ξ))X(s, ξ) = B(ξ) (9)
Y (s, ξ) = C(ξ)X(s, ξ) + D(ξ) (10)

where the dependence on a vector of RVs ξ is explicitly
indicated. Our goal is to build a PC-model of the form (8)
for the output Y .

In what follows, we will demonstrate that our goal can be
achieved:

• choosing on the number of basis functions M ;
• computing the PC coefficients of the state-space matrices;
• calculating the corresponding Galerkin projection [7] to

determinate the coefficients of the PC expansion of X;
• calculating the PC expansion of Y by means of a suitable

combination of the results previously obtained.
In our approach, the number of basis functions M is chosen
upfront, according to (4). This choice is made considering
that P can be limited between two and five [1], [5] for
a variability analysis. The linear regression technique [2] is
used to compute the PC coefficients. This regression approach
allows to calculate all the PC coefficients of the state-space
matrices solving a least-square system, calculated with respect
to an initial set of discrete samples of the normalized RVs[
ξj

]K

j=1
, of the form [2]

Ψα = R (11)

The j−th row of the matrix Ψ is formed by the multivariate
polynomial basis evaluated in ξj , while the matrix R represent
the corresponding set of values of the system transfer function.

Hence, the equivalent equation (11) must be built for
each state-space matrices in (9), (10). The starting point of
the proposed technique is the computation of K univariate
frequency-domain macromodels, called root macromodels [9],
[10]. This is done by using the Vector Fitting (VF) algorithm
[11] K times for a discrete set of values of the normalized RVs[
ξj

]K

j=1
, where the same number of frequency samples is used

each time. Afterwards, using a suitable realization technique,
a state-space realization is obtained for each root macromodel
[Aj , Bj , Cj , Dj ]Kj=1, assuring that all the K realizations
of each state-space matrices have common dimensions. The
standard Gilbert realization [12] is used in our method.

Finally, an equivalent equation (11) can be obtained for
each state-space matrix by ordering in a suitable way the basis
functions and the state-space matrices computed for each ξj .

At this point, the state-space matrices are modeled in the
form (8), thanks to an a priori estimation of M and the use
of the linear regression method. In the following, the PC
coefficients of the state-space matrices will be indicated as
Ai, Bi, Ci, Di, i = 0, ...,M . Now, let us assume that also
the state vector and the output are expressed with a PC model,
then (9) and (10) become

s

M∑
j=0

Xj(s)ϕj(ξ) =
M∑
i=0

M∑
j=0

AiXj(s)ϕi(ξ)ϕj(ξ)

+
M∑
i=0

Biϕi(ξ)

(12)

M∑
j=0

Y j(s)ϕj(ξ) =
M∑
i=0

M∑
j=0

CiXj(s)ϕi(ξ)ϕj(ξ)

+
M∑
i=0

Diϕi(ξ)

(13)

where the only unknown terms are the matrices of PC coeffi-
cients Xj(s) for the state vector, and Y j(s) for the output.

The desired state-vector coefficients can now be calculated
through Galerkin projection [7]. For example, let us assume
that the transfer function of the multiport system depends on
one RV and M = 2 basis functions are used for the PC model.
These hypotheses are not stringent: it is straightforward to
extend the presented formulation to the case of multiple RVs
and higher order of expansion. In this simplified case, equation
(12) can be rewritten as

sX0ϕ0 + sX1ϕ1 = A0X0ϕ0ϕ0

+ A1X0ϕ1ϕ0 + A0X1ϕ0ϕ1 + A1X1ϕ1ϕ1

+ B0ϕ0 + B1ϕ1 (14)

where the explicit dependency on the vector ξ is omitted, for
the sake of clarity. Projection of (14) onto the basis function



ϕp with p = 0, 1, yields

sX0 < ϕ0, ϕp > +sX1 < ϕ1, ϕp >=
A0X0 < ϕ0ϕ0, ϕp > +A1X0 < ϕ1ϕ0, ϕp >

+ A0X1 < ϕ0ϕ1, ϕp > +A1X1 < ϕ1ϕ1, ϕp >

+ B0 < ϕ0, ϕp > +B1 < ϕ1, ϕp > (15)

Therefore, the desired matrices X0 and X1 can be easily
calculated once the scalar products in (15) are computed.

Finally, it is straightforward to obtain the PC coefficients of
the output Y j(s). Indeed, thanks to the orthogonality relation
(2), projecting equation (13) onto the basis function ϕp with
p = 0, 1, leads to

Y p(s) < ϕp(ξ) >2=
1∑

i=0

1∑
j=0

CiXj(s) < ϕi(ξ)ϕj(ξ), ϕp(ξ) > +Dp < ϕp(ξ) >2

(16)

where all the scalar products in (16) are already known,
because they were computed in the previous step to calculate
the PC coefficients Xj of the state-vector.

IV. NUMERICAL EXAMPLE

A bandpass hairpin filter has been modeled within the
frequency range [1.5 − 3.5] GHz. Its layout is shown in Fig.
1. The substrate is 0.635 mm thick with a relative dielectric
constant εr = 9.9. The filter has a length L = 12 mm and its
conductors have a width W1 = 0.33 mm, while the conductors
at the input or output port have a width of W2 = 0.66 mm.
The spacing between the conductors at the input or output port
and the filter conductors is S1 = S2 = 0.3 mm and the spacing
between the filter conductors is D = 1 mm. The distance C
is equal to 2.5 mm.

Fig. 1. Layout of the hairpin bandpass filter.

The scattering parameters of the structure are considered
as a stochastic process with respect to two independent RVs
(N = 2) with uniform PDFs: the spacing S1 and the distance
D. Both variables vary in a range of ±10% with respect to
their nominal value. The corresponding basis functions are
products of the Legendre polynomials [4], while the weighting

function (3) is

W (ξ) =

{
2−N , |ξi| ≤ 1, i = 1, ...., N

0, elsewhere
(17)

The scattering parameters are evaluated using ADS Momen-
tum1 over a grid composed of 31 samples for the frequency
and 6 × 6 (S1, D) samples for the geometrical parameters,
while the simulations are performed with MATLAB2 2010a on
a computer with an Intel(R) Core(TM) i3 processor and 4 GB
RAM. Note that the scalar products necessary to calculate the
Galerkin projection are calculated analytically on beforehand.

The rational models for the initial samples are calculated
using the VF algorithm. To estimate the required number of
poles, −60 dB is chosen as maximum absolute model error
between the scattering parameters and the corresponding root
macromodels . The PC expansion is calculated using P = 2
and M = 5, according to (4). The comparison in Table
I illustrates the significant efficiency gain of the proposed
technique with respect to the MC analysis (performed using
10000 samples).

TABLE I
EFFICIENCY OF THE PROPOSED PC-BASED TECHNIQUE

Technique Computational time

Monte Carlo Analysis (10000 samples) 208 h, 45 min, 57.5 s

PC-based technique (36 samples) 45 min 16.6 s

Details PC-based technique Computational time

Initial simulations 45 min 5.6 s

PC model scattering parameters 11 s

Fig. 2 shows the results of the MC analysis for the magni-
tude of S11. It is worth noticing that, for the central frequency
2.5 GHz, the filter has a high variability with respect to the
chosen RVs. Figs. 3, 4 show an example of the accuracy of
the proposed PC-based technique with respect to the classical
MC analysis, in computing the first two stochastic moments of
the scattering parameters. Furthermore, the PC-based model is
able to accurately represent also the PDF of the process, as
shown in Fig. 5 for the filter central frequency. Similar results
can be obtained for all other entries of the scattering matrix.

V. CONCLUSIONS

We have presented a novel technique for efficient variability
analysis of general multiport systems. The system variability
features are described using the PC expansion applied to
rational root macromodels of the system transfer function.
The proposed approach presents a high degree of versatility,

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
2The Mathworks, Inc., Natick
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Fig. 2. Variability of the magnitude of S11. The green thick line corresponds
to the nominal value for S1 and D.
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Fig. 3. Mean for the real part of S11 obtained with the MC analysis and
the proposed PC-based method.
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Fig. 4. Standard deviation for the imaginary part of S11 obtained with the
MC analysis and the proposed PC-based method.
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Fig. 5. PDF and CDF of the magnitude of S11 at 2.5 GHz. Full black
line: PDF computed using the novel technique; Dashed black line: CDF
computed using the novel technique; Circles (◦): PDF computed using the
MC technique; Squares (2): CDF computed using the MC technique.

allowing to express the system transfer function in different
forms (e.g. scattering, impedance or admittance parameters).
Comparison results with the standard MC approach validate
the accuracy and computational efficiency of the new proposed
method.
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