416 research outputs found

    Laboratory measurements and modeling of microwave absorption by ammonia in gas mixtures applicable to giant planet atmospheres

    Get PDF
    Accurate knowledge of the microwave absorption behavior of ammonia is critical to the correct interpretation of radio astronomical and radio occultation data from the giant planets. New cavity resonator techniques developed at the Stanford Center for Radar Astronomy have allowed accurate laboratory measurements of the microwave absorptivity and refractivity spectra of gas mixtures containing trace amounts of ammonia. A parameterized version of the modified Ben-Reuven formalism of Berge and Bulkis was optimized to fit the new data. The new formalism produced by this method predicts ammonia absorptivity much more accurately than previous formalism over a significant range of conditions

    Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    Get PDF
    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated

    User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    Get PDF
    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included

    Scientific Value of a Saturn Atmospheric Probe Mission

    Get PDF
    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1]

    ALMA observations of atomic carbon in z~4 dusty star-forming galaxies

    Get PDF
    We present ALMA [CI](101-0) (rest frequency 492 GHz) observations for a sample of 13 strongly-lensed dusty star-forming galaxies originally discovered at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these new data with available [CI] observations from the literature, allowing a study of the ISM properties of 30\sim 30 extreme dusty star-forming galaxies spanning a redshift range 2<z<52 < z < 5. Using the [CI] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6×10106.6 \times 10^{10} M_{\odot}. This is in tension with gas masses derived via low-JJ 12^{12}CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2_2 conversion factor for our sample of αCO2.5\alpha_{\rm CO} \sim 2.5 and a gas-to-dust ratio 200\sim200, or (b) an high carbon abundance XCI7×105X_{\rm CI} \sim 7\times10^{-5}. Using observations of a range of additional atomic and molecular lines (including [CI], [CII], and multiple transitions of CO), we use a modern Photodissociation Region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength, and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterised by dense gas permeated by strong UV fields. We note that previous efforts to characterise PDR regions in DSFGs may have significantly underestimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA

    Aerocapture Systems Analysis for a Neptune Mission

    Get PDF
    A Systems Analysis was completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The systems analysis includes the following disciplines: science; mission design; aeroshell configuration; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and aeroheating environment; stability analyses; guidance development; atmospheric flight simulation; thermal protection system design; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture is feasible and performance is adequate for the Neptune mission. Aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle and results in a 3-4 year reduction in trip time compared to all-propulsive systems. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads

    The redshift distribution of dusty star forming galaxies from the SPT survey

    Full text link
    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z=3.9+/-0.4, and the highest-redshift source in our sample is at z=5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4mm-selected sources with a median redshift of z=3.1+/-0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution

    SPT 0538-50: Physical conditions in the ISM of a strongly lensed dusty star-forming galaxy at z=2.8

    Full text link
    We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the ISM. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538-50, similar to local starburst galaxies, and unlike that seen in some other DSFGs at this epoch.Comment: 16 pages, 11 figures. Accepted for publication in Ap
    corecore