56 research outputs found

    Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis

    Get PDF
    Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies

    Septins Regulate Bacterial Entry into Host Cells

    Get PDF
    Background: Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB. Methodology/Principal Findings: Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET. Conclusions/Significance: Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin an

    Both SEPT2 and MLL are down-regulated in MLL-SEPT2 therapy-related myeloid neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A relevant role of septins in leukemogenesis has been uncovered by their involvement as fusion partners in <it>MLL</it>-related leukemia. Recently, we have established the <it>MLL-SEPT2 </it>gene fusion as the molecular abnormality subjacent to the translocation t(2;11)(q37;q23) in therapy-related acute myeloid leukemia. In this work we quantified <it>MLL </it>and <it>SEPT2 </it>gene expression in 58 acute myeloid leukemia patients selected to represent the major AML genetic subgroups, as well as in all three cases of <it>MLL-SEPT2</it>-associated myeloid neoplasms so far described in the literature.</p> <p>Methods</p> <p>Cytogenetics, fluorescence in situ hybridization (FISH) and molecular studies (RT-PCR, qRT-PCR and qMSP) were used to characterize 58 acute myeloid leukemia patients (AML) at diagnosis selected to represent the major AML genetic subgroups: <it>CBFB-MYH11 </it>(n = 13), <it>PML-RARA </it>(n = 12); <it>RUNX1-RUNX1T1 </it>(n = 12), normal karyotype (n = 11), and <it>MLL </it>gene fusions other than <it>MLL-SEPT2 </it>(n = 10). We also studied all three <it>MLL-SEPT2 </it>myeloid neoplasia cases reported in the literature, namely two AML patients and a t-MDS patient.</p> <p>Results</p> <p>When compared with normal controls, we found a 12.8-fold reduction of wild-type <it>SEPT2 </it>and <it>MLL-SEPT2 </it>combined expression in cases with the <it>MLL-SEPT2 </it>gene fusion (p = 0.007), which is accompanied by a 12.4-fold down-regulation of wild-type <it>MLL </it>and <it>MLL-SEPT2 </it>combined expression (p = 0.028). The down-regulation of <it>SEPT2 </it>in <it>MLL-SEPT2 </it>myeloid neoplasias was statistically significant when compared with all other leukemia genetic subgroups (including those with other <it>MLL </it>gene fusions). In addition, <it>MLL </it>expression was also down-regulated in the group of <it>MLL </it>fusions other than <it>MLL-SEPT2</it>, when compared with the normal control group (p = 0.023)</p> <p>Conclusion</p> <p>We found a significant down-regulation of both <it>SEPT2 </it>and <it>MLL </it>in <it>MLL-SEPT2 </it>myeloid neoplasias. In addition, we also found that <it>MLL </it>is under-expressed in AML patients with <it>MLL </it>fusions other than <it>MLL-SEPT2</it>.</p

    Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression

    Get PDF
    International audienceABSTRACT: INTRODUCTION: Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas including colorectal, head and neck, ovarian and breast, compared to normal tissue. Mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. METHODS: Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA, and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the Polyoma Virus Middle T antigen mouse model (PyMT). MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distribution and affect on cell migration. RESULTS: An overall increase in gene amplification and altered expression of SEPT9 was observed during breast tumorigenesis. We identified an intragenic alternative promoter whose methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. CONCLUSIONS: In this study we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform specific expression and function

    Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes

    Get PDF
    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins

    A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium

    Get PDF
    The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure

    The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size

    Get PDF
    The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates

    SEPTIN12 Genetic Variants Confer Susceptibility to Teratozoospermia

    Get PDF
    It is estimated that 10–15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12+/+/Septin12+/− chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development

    A Draft of the Human Septin Interactome

    Get PDF
    Background: Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings: Here, we performed yeast two-hybrid screens with human septins 1-10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance: If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the ""group rule"", i.e. members of the same group (e. g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.Fundao de Amparo a Pesquisa do Estado Sao Paulo (Fapesp)CAPES: Coordenao de Aperfeioamento de Pessoal de Navel SuperiorConselho Nacional de Pesquisa e Desenvolvimento (CNPq)Laboratorio Nacional de Biociencias-Centro Nacional de Pesquisa em Energia e Materais (LNBio-CNPEM

    Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    Get PDF
    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles
    • …
    corecore