604 research outputs found

    On the advantages of the vorticity-velocity formulation of the equations of fluid dynamics

    Get PDF
    The mathematical properties of the pressure-velocity and vorticity-velocity formulations of the equations of viscous flow are compared. It is shown that a vorticity-velocity formulation exists which has the interesting property that non-inertial effects only enter the problem through the implementation of initial and boundary conditions. This valuable characteristic, along with other advantages of the vorticity-velocity approach, are discussed in detail

    Analysis of an RNG based turbulence model for separated flows

    Get PDF
    A two-equation turbulence model of the K-epsilon type was recently derived by using Renormalization Group (RNG) methods. It was later reported that this RNG based model yields substantially better predictions than the standard K-epsilon model for turbulent flow over a backward facing step - a standard test case used to benchmark the performance of turbulence models in separated flows. The improvements obtained from the RNG K-epsilon model were attributed to the better treatment of near wall turbulence effects. In contrast to these earlier claims, it is shown in this paper that the original version of the RNG K-epsilon model substantially underpredicts the reattachment point in the backstep problem. This is a deficiency that is traced to the modeling of the production of dissipation term. However, with the most recent improvements in the RNG K-epsilon model, excellent results for the backstep problem are now obtained

    Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    Get PDF
    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling

    Turbulent separated flow past a backward-facing step: A critical evaluation of two-equation turbulence models

    Get PDF
    The ability of two-equation models to accurately predict separated flows is analyzed from a combined theoretical and computational standpoint. Turbulent flow past a backward facing step is chosen as a test case in an effort to resolve the variety of conflicting results that were published during the past decade concerning the performance of two-equation models. It is found that the errors in the reported predictions of the k-epsilon model have two major origins: (1) numerical problems arising from inadequate resolution, and (2) inaccurate predictions for normal Reynolds stress differences arising from the use of an isotropic eddy viscosity. Inadequacies in near wall modelling play a substantially smaller role. Detailed calculations are presented which strongly indicate the standard k-epsilon model - when modified with an independently calibrated anisotropic eddy viscosity - can yield surprisingly good predictions for the backstep problem

    On explicit algebraic stress models for complex turbulent flows

    Get PDF
    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations

    Second-order closure models for rotating turbulent flows

    Get PDF
    The physical properties of the commonly used second-order closure models are examined theoretically for rotating turbulent flows. Comparisons are made with results which are a rigorous consequence of the Navier-Stokes equations for the problem of a fully-developed turbulent channel flow in a rapidly rotating framework. It is demonstrated that all existing second-order closures yield spurious physical results for this test problem of rotating channel flow. In fact, the results obtained are shown to be substantially more unphysical than those obtained from the simpler K-epsilon and K-l models. Modifications in the basic structure of these second-order closure models are proposed which can alleviate this problem

    On the prediction of turbulent secondary flows

    Get PDF
    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points

    A semiclassical tetrahedron

    Get PDF
    We construct a macroscopic semiclassical state state for a quantum tetrahedron. The expectation values of the geometrical operators representing the volume, areas and dihedral angles are peaked around assigned classical values, with vanishing relative uncertainties.Comment: 10 pages; v2 revised versio

    A near-wall two-equation model for compressible turbulent flows

    Get PDF
    A near-wall two-equation turbulence model of the K - epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K - omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper

    Toward the large-eddy simulation of compressible turbulent flows

    Get PDF
    New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96(exp 3) grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence (conducted on a coarse 32(exp 3) grid) is shown to yield results that are in excellent agreement with the fine grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly
    • …
    corecore