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ABSTRACT

New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are

developed and tested based on the Favre-filtered equations of motion for an ideal gas. A

compressible generalization of the linear combination of the Smagorinsky model and scale-

similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress ten-

sor. An analogous thermal linear combination model is also developed for the subgrid-scale

heat flux vector. The two dimensionless constants associated with these subgrid-scale models

are obtained by correlating with the results of direct numerical simulations of compressible

isotropic turbulence performed on a 963 grid using Fourier collocation methods. Extensive

comparisons between the direct and modeled subgrid-scale fields are provided in order to val-

idate the models. A large-eddy simulation of the decay of compressible isotropic turbulence

- conducted on a coarse 323 grid - is shown to yield results that are in excellent agreement

with the fine grid direct simulation. Future applications of these compressible subgrid-scale

models to the large-eddy simulation of more complex supersonic flows are discussed briefly.

tThis report supersedes ICASE Report No. 87-20
tThis research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in
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1. Introduction

The direct numericalsimulation of turbulent flowsat the high Reynoldsnumbersencountered
in problemsof technologicalimportance is all but impossibleas a result of the wide range
of scalesthat are present. Consequently,the solutions to such problems must invariably

be based on some form of turbulence modeling. Traditional turbulence models based on

Reynolds averages have had only limited success since the large scales of the turbulence

- which contain most of the energy - are highly dependent on the geometry of the flow

being considered. Experience has indicated that such models usually break down when a

variety of turbulent flows are considered (Lumley 1983). The small scales are more universal

in character, and serve mainly as a source for dissipation. Hence, it can be argued that a

better understanding of turbulent flows could be achieved if just the small scales are modeled

while the large scales are calculated (Deardorff 1970). This is the fundamental idea behind

large-eddy simulations.

During the past decade, considerable progress has been made in the large-eddy simulation

of incompressible turbulent flows. This effort has shed new light on the physics of turbulence.

The earliest work relied heavily on the use of the Reynolds averaging assumption to elim-

inate the Leonard and cross stresses while the Reynolds stresses were computed using the

Smagorinsky model (Deardorff 1970, Leonard 1974, Reynolds 1976). More recent large-eddy

simulations have been based on the direct calculation of the Leonard stresses with models

provided for the cross and Reynolds subgrid-scale stresses in order to enhance the numerical

accuracy (see Biringen and Reynolds 1981, Bardlna Ferziger and Reynolds 1983). However,

among these newer models, only the Bardina, Ferziger and Reynolds (1983) model, with a

Bardina constant of 1.0, satisfies the important physical constraint of Galilean invariance

(Speziale 1985). The underlying physical concepts, fundamental numerical algorithms, and

comprehensive historical data behind the recent field of large-eddy simulation have been

presented in articles by Schumann (1975), Voke and Collins (1983) and Rogallo and Moin

(1984). More recently, work on the subgrid-scale modeling of transition to turbulence of ini-

tially laminar incompressible flows has begun (Piomelli, Zang, Speziale and Hussaini 1990).

Several large-eddy simulations have been performed and initial results are promising.

Despite the intensive research effort that has been devoted to the large-eddy simulation

of incompressible flows as outlined above, it appears that no large-eddy simulation of a

compressible turbulent flow has yet been attempted. Of course, such work could have im-

portant technological applications in the analysis of turbulent supersonic flows, where shock

waves are generated, and in turbulent flows within combustion chambers. The prerequisite

for carrying out such computations is the development of suitable subgrid-scale models for

compressible turbulent flows. With the exception of the recent work of Yoshizawa (1986)

and Speziale et al. (1988), few, if any, studies along these lines appear to have been pub-

lished. The subgrid-scale models of ¥oshizawa are only suitable for slightly compressible

turbulent flows since they made use of an asymptotic expansion about an incompressible

state. Recently however, Dahlburg, Zang and Dahlburg (1990) have performed an extensive



parameter study using the model developedby Spezialeet al. (1988). It was shown by
Spezialeet al. (1988) that, for the purposesof accuracy,the Leonard and cross stresses
must be accountedfor. Furthermore, the modeling of the isotropic part of the Reynolds
subgrid-scalestresstensorwasshownto be questionable- an issuethat was left for future
research.

In this paper, complete subgrid-scale models are developed for the closure of the Favre-

filtered Navier-Stokes and energy equations. The compressible subgrid-scale stress model

that is obtained in Section 2 reduces to the linear combination model of Bardina, Ferziger

and Reynolds (1983) in the incompressible limit. Likewise, the subgrid-scale heat flux model

that is obtained herein consists of an analogous linear combination of scale similarity and

gradient transport terms. The dimensionless constant which appears in the subgrid-scale

stress model is arrived at through correlation analysis of data generated from direct numerical

simulations of compressible isotropic turbulence. A more detailed comparison of computed

and modeled subgrid-scale fields is presented along with the results of a large-eddy simulation

of compressible isotropic turbulence.

2. Subgrid-Scale Models for Compressible Turbulence

The compressible turbulent flow of an ideal gas is considered. Such flows are governed by

the continuity, momentum and energy equations which - neglecting body forces - are given

by (cf. Batchelor 1967)

Op O(pvk) =0 (1)
o-7+ a_---T

o(p,,k) o(pvkv,) ov o,.,_,
0"---_ + Ozt = 0xk + 0z'--'_" (2)

O(phat- ) + O(phvkOmk ) Opat __,_. o aT- +.. + g_-;_(_b-;-;_)+ ¢ (3)

respectively, where p is the mass density, v is the velocity vector, p is the thermodynamic

pressure, # is the dynamic viscosity, h is the enthalpy, T is the absolute temperature, and _;

is the thermal conductivity. The viscous stress akt and the viscous dissipation • are defined

by

O'kl

¢

2 Ov i_ ,Ovk Ovt)

___(o_)_+.(°_ o_,)o_0_ _ + _ _ (5)

respectively. Herein, the Einstein summation convention applies to repeated indices. Equa-

tions (1)-(3) must be supplemented with the equations of state

P = pRT, h = CpT (6)
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for an ideal gas where R is the ideal gas constant and Cp is the specific heat at constant

pressure. Likewise, the dependence of the viscosity and thermal conductivity on the temper-

ature must he provided (i.e., relationships of the form/z = #(T) and n = _(T) are needed

and these depend on the gas under consideration).

Any flow variable _" can be filtered in the following manner:

y(x) = fo a(x- %zx)7(z)d3z (7)

where G is a filter function, A is the computational mesh size, and D is the domain of the

fluid. The filter function G is typically taken to be an infinitely differentiable function of

bounded support in a bounded domain, or a Gaussian distribution in a periodic domain $. It

is normalized by requiring that

fD G(x- z,A)daz = 1. (8)

It follows that in the limit as the computational mesh size goes to zero, (7) becomes a Dirac

delta sequence, i.e.

1_0f. a(x- z,A)7(z)d_z= f_ S(x- _)7(,)_'_ = _(x) (9)

where 6(x-z) is the Dirac delta function (Arfken 1970). The filter function has the property

that the amplitude of the high-frequency spatial Fourier components of any flow variable _"

are substantially reduced. Consequently, _ represents the large-scale part of }'. At this

point, it should be mentioned that as a result of the defining properties of G, it follows that

Piomelli, Ferziger and Moin (1987) discuss the relationship between the form of the filter

function and that of the subgrid-scale turbulence model.

The turbulent fields are decomposed as follows, based on Favre filtering:

._" --- .T"A- _ I (11)

where the Favre filter

_-= _ (i2)
#

is defined in an analogous manner to the Favre time average which has been of use in the

more traditional studies of compressible turbulent flows (Hinze 1975). However, contrary to

the more traditional Favre time averaging,

_" # _" (13)

_A Gaussian filter is adopted for the calculations in this study
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in general, and hence

_'#o. (14)

The direct filtering of the continuity equation (1) yields

+ _ - 0 (15)

where we have used (10) and (12). Likewise, a direct filtering of the momentum equation

yields

O(_g'k) + O(#"5k'b,) O_' O_k, O'rk, (16)a--V- a=_ - a=k+ _ + a=--_-
where

and

is the subgrid-scale stress tensor.

follows,

----_RT (17)

_'k, = --fi(_kO, - OkO,+ vLO, + v_Ok + vLv[) (18)

The subgrid-scale stress tensor can be decomposed as

v=L+C+R (19)

where

L_ = -p-(_'_,- 0k_,) (20)

C_ = -_(v_"fi, + v"_k) (21)

Rja = -fiv'k v [ (22)

are respectively, the subgrid-scale Leonard, cross, and Reynolds stresses based on Favre

filtering. From (20), it is clear that the Leonard stress can be calculated directly and does

not need to be modeled. The cross stress is modeled with the scale similarity model

(23)

(with a coefficient of unity to ensure Galilean invariance of the overall model). This model

is analogous to its incompressible counterpart, which has been reasonably successful in the

large-eddy simulation of incompressible turbulent flows (Bardina, Ferziger and Reynolds

1983, Speziale 1985). The subgrid-scale Reynolds stress tensor is separated into deviatoric

and isotropic parts, respectively, as follows:

R = DR + zR (24)

where

and

DRk, =--'_(v_kv_ - 1 77Y__,

1 - .'ZT_.,-
IRkl = ---_pv_vibkl.

(25)

(26)
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Here, the deviatoric part of the subgrid-scale Reynolds stress tensor, DR, is modeled using

the compressible generalization of the Smagorinsky model that is given by

1- 5 (27)

where

1.0_,_ 0_,1 (281s_ = 5(_ + oxk

zz_= _._m. (29)

(i.e., S is the Favre filtered rate of strain tensor while II_ is its second invariant) and CR is

the compressible Smagorinsky constant. Yoshizawa - by means of a two-scale DIA method -

derived a model for the isotropic part of the subgrid-scale Reynolds stress tensor, zR, given

by

6

where Cz is a dimensionless constant. Equation (30) can, for the most part, be obtained

by making a turbulence production equals dissipation equilibrium hypothesis (Yoshizawa

1986). However, this model was shown by Speziale et al. (1988) to correlate very poorly

with the results of direct numerical simulations of compressible isotropic turbulence. Since

zR is extremely small compared to the thermodynamic pressure, we propose to neglect it -

an assumption that will be justified later. Hence, the overall subgrid-scale stress model we

propose takes the form

"rtl = -'_(_k"--'_,- vkv,) + 2CR'_A2II_/2(Sk, 1 -- _s_6_). (31)

In the incompressible limit, Eq. (31) reduces to the linear combination model

- "od/p = _k_t - vkv, - 2CaA2II[2"Skl (32)

of Bardina, Ferziger, and Reynolds (1983) where the Bardina constant is one in order to sat-

isfy Galilean invariance (Speziale 1985). This reduction process is a consequence of Eq. (31)

and

¢=v, .¢m_=_ = 0 (33)

when p becomes constant.

A direct filtering of the energy equation yields the filtered form

+
Ot Ozk

O_ _r, -
Ot + vk-g-_zk+ `_

0 _ OQk
+-g-Z;__('_-g-__) o__ (34)

where

Qk = Cp-_ ( 9kT - _kT + v'kT + 9kT' + v'kT') (35)
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is the subgrid-scaleheat flux. The subgrid-scaleheat flux can be decomposedin the same
fashion as the subgrid-scalestresses.This leadsto

Q = Q(L) + Q(c) + Q(R) (36)

where

Q(L) = Cp-fi(gkT- 9T) (37)

q(C) = Cp-_(v_'-_ + _a'-T') (38)

q(_) = c,,_,,_, (30)

are the Leonard, cross, and Reynolds heat fluxes. Analogous to the modeling of the cross

stress, the cross heat flux is modeled using the scale similarity format

Q([)= c_(_¢ - _,__). (40)

The Reynolds heat flux is modeled with the usual gradient transport format as follows (cf.

Eidson 1985):

CR A2II_/2 aT (41)
v_T'- P--rrT s axa

where PrT is the turbulent Prandtl number. Of course, the Leonard heat flux can be

calculated directly. Hence, the overall model for the subgrid-scale heat flux we propose is as
follows:

Qa = Cp'_ (_ - va_)- C....._aA2ils/2 (42)
PrT

and is obtained by combining equations (37), (40), and (41).

At this point, some comments need to be made concerning the viscous terms on the

right-hand side of (16) and the pressure gradient-velocity and viscous dissipation terms

which appear on the right-hand side of (34). The pressure gradient-velocity correlation can
be written in the alternative form

_ o(_)
cOxa P Ozk

a Ova

- Oxa(;a-T_-)_ - vO=k

- O_k(zR_a_)+ Oa - (43)

where only the pressure dilatation term

P Oza - -fiR(T-_xkk)

-_RT' ova
= p_ti-_z k + "fiRT' + -_RT +

(44)



is not yet closed. The temperature dilatation correlation (T' ) is extreme/v difficult to

model and not much success has been achieved in dealing with it in the context of Reynolds

stress models. However, within the framework of subgrid-scale modeling, this term and its

corresponding cross correlation have physical interpretations. They represent the contribu-

tion of the dilatation of the small scales to the internal energy variation of the fluid - an

effect which is expected to be small. Hence, for this initial study, we neglect such terms.

Furthermore, since the mean temperature is constant and the temperature fluctuations are

small (< 10%), the viscosity and thermal conductivity are held constant. For similar reasons,

we also neglect the small scale component of the viscous dissipation.

The turbulence model proposed herein is thus complete once values for the constants

CR and PrT are obtained. This will be accomplished using the results of direct numerical

simulations of compressible isotropic turbulence.

3. Numerical Method

Our direct simulations of compressible turbulence are based on a non-dimensional form of

Eqs. (1)-(3), with the time derivative in the energy equation written solely in terms of the

pressure. In order to alleviate the severe stability limit imposed at very low Mach numbers

by the acoustic waves, a splitting method is adopted. The first step integrates the equations

cOp
o-7= 0, (45)

co(pvk) O(pvkvt) coak, (46)
CO------i--+ Oxl - Ox_ '

COp COp cork

cO-;+ + -

while the second step integrates

c2 cO(pvk ) 1 cO2T
o _ - RePrM_ cOxkcOx--------_+ (_l- 1)@, (47)

cOp cO(P'*)- 0, (4s)
0-7 + COzk

a(pvk) + cO_p.__p=
a---T- COxk 0, (49)

COp c_co(pvk)
a--i+ o -o. (50)

The constants Co and M_ are the current root mean square (rms) value of the sound speed (c)

and the reference Mach number, while "y = Cp/C., where C. is the specific heat at constant

volume. These equations are non-dimensionalized in terms of a length scale (Lo), a velocity

scale (U0), a pressure scale (P0), a reference viscosity # and a reference thermal conductivity
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_¢. The Reynolds number is given by Re = poUoLo/#, the Prandtl number by Pr = Cp#/_,

and the reference Mach number by Moo = Uo/('rRTo) 1/2. For all calculations presented in

this study, 3, = 1.4, and Pr = 0.7. Initially, the density po is uniform and equal to one. The

computational domain is a cube, normalized to [0,2_'] 3. Periodic boundary conditions are

imposed in all three directions.

The spatial derivatives in these equations are approximated by a Fourier collocation

method (see, for example, Hussaini and Zang 1987). In each coordinate direction, N grid

points are used: zkj = 2_rj/N, for j = 0, 1, ..., N - 1. The derivative of a function 5r(x) with

respect to x_ is approximated by the analytic derivative of the trigonometric interpolant of

9r(x) in the direction xk. Most simulations of incompressible, homogeneous turbulence have

used a Fourier Galerkin method. The compressible equations, however, contain cubic rather

than quadratic nonlinearities and true Galerkin methods are more expensive (compared with

collocation methods) than they are for incompressible flow. The essential difference between

collocation and Galerkin methods is that the former are subject to both truncation and

aliasing errors, whereas the latter have only truncation errors. As discussed extensively by

Canuto, et al (1987), the aliasing terms are not significant for a well-resolved flow. However,

care is needed to pose a collocation method in a form which ensures numerical stability. For

this reason, the second term in (46) is actually used in the equivalent form

"0(p'k'i)
C_x!

ov, .k0(p.,)]
+ Pv!-O zl+ Ox! J " (51)

As noted by Feiereisen, Reynolds and Ferziger (1981), when this form is employed together

with a symmetric differencing method in space (for example Fourier collocation), then in

addition to mass, and momentum, energy is conserved for the ideal compressible equations

(zero viscosity and thermal conductivity) in the absence of time differencing (and splitting)
errors.

The second fractional step of the splitting, given by (48)-(50), contains most of the effects

of the acoustic waves. This splitting is employed at each stage of a third-order Runge-

Kutta method. In the simulations reported here, the second fractional step is integrated

analytically. In Fourier space, (48)-(50) become

o--7+ ik! , = 0 (52)

0rh_

0--5-+ = 0 (53)

(3--7+ ic_kt_l = 0 (54)

where m! = fly! and Fourier transformed quantities (which depend upon the wavenumber k)

are denoted by a circumflex. The exact solution of these equations is

1 ^

_(_-) = _0) + _o[A cos(cokAt.) + B sin(cokAt.) - A] (55)



r_2) = _1) _ ik____L[A sin(cokAt,) - B cos(cokAt,) +/}] (56)
cok

2 (2) = A cos(cokAt,)+ B sin(c0At,) (57)

where k = Ikl is the magnitude of the Fourier wavenumber, ti. =/3(1), /_ = i_kl_al 1). The

superscript 1 denotes the result of the first fractional step of the splitting and the superscript

2 the results of the second fractional step. The effective time-step of the Runge-Kutta stage

is denoted by At,. The advantage of this splitting is that the principal terms responsible for

the acoustic waves have been isolated. Since they are treated semi-implicitly, one expects

the time-step limitation to depend upon v + [c - Col rather than v + c. (Although there is

also a viscous stability limit for the first fractional step, it is well below the advection limit

in the cases of interest.) This is clearly a substantial advantage at low Mach numbers. Since

the second fractional step is integrated analytically, it does not contribute to any time step

limitations. If one is truly interested in all the details arising from the sound waves, or if

there is a substantial coupling between the sound waves and the rest of the flow, then the

time-step must be small enough to resolve the temporal evolution of these waves. But, if

only the larger-scale sound waves are of interest, then this splitting method is useful.

During the acoustic fractional step, an isotropic truncation is performed: for each variable

(p, pv and p), all Fourier coefficients for which

k,k,> (g/2) _ (58)

are set to zero. This reduces the numerical anisotropy produced by a cubic truncation.

Moreover, it reduces the aliasing interactions in the collocation method (Canuto et al 1987,

Chapters 3 and 7).

The compressible code can also be executed in a purely explicit mode. In this case no

splitting is performed; Eqs. (45)-(50) are simply combined in the appropriate manner and

integrated directly.

The expected stability limit of this three-dimensional Fourier collocation method for the

compressible Navier-Stokes equations has the form

 '<°rm xD1'Lg,'_,_= Ui

where for the semi-implicit version,

while

u, = Iv,I+ Ic- c01

when the time advancement is fully explicit.

employed here, we use a = 0.5.

(60)

u, = Iv,I+ Icl (61)
For the third-order Runge-Kutta method

A number of simulations have also been conducted of strictly incompressible flow. These

were performed with a separate code which also used a Fourier collocation method, but for

the simpler, incompressible Navier-Stokes equations.



4. Comparison with Incompressible Results

The initial conditions for the numerical simulations were designed to reproduce the experi-

mental data of Comte-Bellot and Corrsin (1971) on isotropic turbulence, hereafter referred to

as CBC. These experiments were also the basis of direct simulations used by Clark, Ferziger

and Reynolds (1979), Bardina, Ferziger and Reynolds (1983), and McMillan and Ferziger

(1979) in their analyses of incompressible LES models. Initial conditions are chosen to match

CBC measurements at a non-dimensional time of 240 (cf. table 4 in Comte-BeUot and Corrsin

1971). The computational domain is a cube of side 20/2_r cm. The CBC parameters are

associated with measurements taken behind a grid with a mesh spacing of one inch, and a

mean fluid velocity of 393.? in�see. The initial time in the direct simulation corresponds to

t = 0.00254 sec in the CBC experiment. The reference length (Lo), velocity (U0) and pres-

sure (P0) are respectively 20/2_" cm, 1 cm/sec and 1 or/cmsec 2. After generating a random,

divergence-free velocity profile, the kinetic energy (in Fourier space) is scaled to match the

measured CBC energy spectrum (see Appendix). Finally, the velocities are scaled so that

the initial rms velocity agrees with the measured values. This adjustment is typically less

than 1%, which provides one measure of the uncertainty in the fit to the experimental data.

With the chosen non-dimensionalization, the Reynolds number Re = UoLo/v is 22.74 based

on a kinematic viscosity v = 0.14 crn2/sec. Table 1 summarizes the parameters measured

CBC 643 962 1283

v,,,,, 6.75 6.75 6.75 6.75
 t,(Sk) - 0.0 0.0 0.0

E - 68.3 68.3 68.3

e 462 375 432 447

All 0.26 0.28 0.27 0.25

A12 - 0.20 0.19 0.27

A13 - 0.20 0.19 0.26

R_ 38.1 43.6 41.3 37.8

Table 1: Initial conditions based on CBC experiment and Clark et al.

(1979) calculation. Mach number is zero.

by CBC at t=240. The Taylor microscale length A_t is defined by

_kl ----

I/2

(62)
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and the dissipation e by

e = 2_ / SijSijd3x,

where Sij is the rate of strain tensor

(63)

Sij = \ + as,i"
(64)

In Eq. (62), (.) denotes a spatial average. Its exact definition is given in the Appendix. The

Taylor microscale Reynolds number is

vlAn (65)
V

The velocity derivative skewness and flatness tensors Sk and F1 are the third and fourth

moments of the velocity gradient and are defined by

\ O-_'xj] / (66)

= 0 j] . (67)

\O jl2f

In tables 1 and 2, only the trace of the skewness and flatness tensors are shown. The

remaining columns list the parameters obtained from the initial conditions of the numerical

simulations on 643, 96 _ and 128 _ grids. There is a 20% discrepancy between the dissipation

obtained by CBC and the dissipation computed on the coarsest grid which suggests that a 64 a

grid has marginal resolution, at best. A 12% difference between the value of Ra calculated

on the 643 grid and that obtained by CBC confirms the need for grids finer than 64 _. On a

963 grid, both the dissipation and Ra are in much closer agreement with CBC. Discrepancies

between our results and CBC for e and Ra are respectively 6.5% and 7.5% on a 963 grid. On

the finest grids on which the direct simulations were performed, the computed values of e

and R_, respectively, have relative errors of 3.5% and less than 1% when compared to CBC.

The numerical simulations were run from t = 240 until t = 375 (in CBC units), which

corresponds to a non-dimensional time interval of 0.1145 (in our units). Table 2 furnishes a

comparison of the experimentally measured parameters with those from the numerical sim-

ulation at the final time. On the coarsest grid, the total dissipation rate that was calculated

is still slightly below the value measured by CBC. A 963 grid generates values of e consistent

with CBC.

11



Vf_j

 t (Sk)
E

C

)_12

R_

CBC 643 963 1283

5.03 5.18 5.19 5.21

- -0.42 -0.51 -0.52

38.6 40.3 40.4 40.7

154.4 151.3 154.6 156.8

0.34 0.33 0.34 0.33

- 0.24 0.24 0.23

- 0.24 0.24 0.23

36.6 37.8 40.4 37.2

Table 2: Final conditions (t=0.1145) based on CBC experiment and

Clark et al. (1979) calculation. Mach number is zero.

At t=0.1145, the diagonal components of Sk are -0.5 which agree well with the numerical

results of Kerr (1985). Kerr studied isotropic, turbulent flow, but prevented the decay of

energy by using an exterior energy source at the large length scales.

As noted in the previous section, we have chosen not to de-alias the advection terms.

In reaching this decision we drew upon the extensive evidence that has accumulated on

aliasing effects in the last dozen years (Canuto, et al 1987, Chapters 3, 4 and 7) and upon

tests conducted with the incompressible isotropic turbulence code. In this code, de-aliasing is

accomplished by applying the 2/3-rule (Canuto, et al 1987, Chapters 3 and 7) in an isotropic

fashion; e.g., the de-aliased results for a 643 grid are obtained by running the incompressible

code on a 963 grid and applying the truncation given by (58) with N/3 in place of N/2 on

the right hand side. The results are summarized in Fig. 1. Here we present the energy

spectra E(k) (defined in the Appendix) for 643, 963, and 1283 grids at t -- 0.0586 for both

aliased and de-aliased calculations. Some adverse effects of aliasing are apparent on the 643

grid, but they are only in the tail of the spectra, and they are already insignificant on a 963

grid. For the reasons outlined here, a 963 grid was chosen as the standard discretization for

the incompressible and for the compressible simulations.

5. Compressible Turbulence Results

5.1. Direct Simulations

Recent work on the direct numerical simulation of homogeneous compressible turbulence

has indicated the crucial role played by the initial conditions. Passot and Pouquet (1986)

conducted direct simulations of two-dimensional, compressible isotropic turbulence and con-

cluded that when the initial rms density fluctuations are small, the turbulence statistics
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remain quasi-incompressible for turbulent Mach numbers Mt less than 0.3.

M, = . (6a)

They also demonstrated (through the use of direct numerical simulations) that eddy shock-

lets result for sufficiently high initial rms density fluctuations and/or turbulent Mach num-

bers. A more systematic analysis and categorization of the effect of the initial conditions on

compressible isotropic turbulence was achieved recently by Erlebacher et al. (1990).

They concluded that for 0 < Mt < 0.3, Prmo must initially be O(Mt) for the resulting

turbulence statistics to become strongly compressible with an O(1) ratio of compressible

to incompressible turbulent kinetic energy. (For the range of Mt considered herein, no

eddy-shocklets occur.) On the other hand, if initially 9_,,,, Tr,,o << Me, then the resulting

turbulence statistics remain quasi-incompressible.

We first present the results of direct numerical simulations of compressible isotropic

turbulence corresponding to the initial conditions of the CBC experiment but with a variety

of non-zero mean Mach numbers. Since for these simulations, the initial conditions are

p_m° = O, T_,,o << 1, only weakly compressible turbulence statistics are expected according

to the theoretical results of Erlebacher et al. (1990). Unless specified otherwise, a subscript

rms for any variable .F refers to the quantity ((2 r- (_-))2)1/2/(_-).

The initial pressure distribution over the entire field is specified. The fluctuating pressure,

p/is determined from the velocity distribution by enforcing a zero initial time derivative for

V.v. A Poisson equation for p/is obtained from the divergence of the momentum equation

after setting the time variation of V. v to zero (Feierelsen et al. 1981). The mean pressure,

Pro, is then determined so that a prescribed initial mean average Mach number, M0, defined

to be the ratio of rms fluid velocity and rms speed of sound, is achieved. An analytic

expression for p_ is given by

P,_ = Mg f v2d3m + f 7p._p-ld3r. ({}9)
7 f p-ld3z

The initial average Mach number is specified at the outset of the direct numerical simulations

(DNS) as an initial condition. Density is initially set to unity, while the temperature, if

required, is derived from the equation of state. Direct numerical simulations are performed

for M0 = 0.0,0.1,0.4 and 0.6.

The Mach 0.6 case contains localized regions of supersonic flow as evidenced by tables

3-4 and by the three-dimensional contour of Mach 1 furnished in figure 2. Nonetheless, the

statistical properties of the flow remain largely unaffected by compressibility effects. This is

shown in figures 3-6 which track the time histories of several statistical variables obtained

from 963 DNS. The time histories for skewness (fig. 3), Al_ (fig. 4), and total kinetic energy

(fig. 5) at Mach numbers 0.0, 0.1, 0.4 and 0.6 are virtually superimposed on each other.

Flatness and skewness are affected the most by compressibility effects in these simula-

tions. Figure 3 indicates that the skewness which corresponds to an isotropic turbulent state
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monotonically increases with Mach number. It is -0.50 at M0 = 0 and has increased to -0.46

at M0 = 0.6. Before the flow has reached a state of isotropic turbulence, the time evolu-

tion of skewness at all Mach numbers are indistinguishable from each other. The physical

system has equilibrated after approximately one third the total computation time. While

not reaching an equilibrium value, it is nonetheless worthwhile to point out that the flatness

parameter decreases by 2% as the Mach number is raised from 0.0 to 0.6 as seen in figure 6.

Figure 5 illustrates the decay of turbulent kinetic energy (f ½v, vi dSz) as a function of

time. This decay is a natural consequence of viscous damping. After a brief initial increase,

Ra continuously decreases in time, (fig. 7), with no sign of stabilizing. On the other hand,

which is representative of the smaller eddies, increases in time (fig. 4). This indicates that

energy in the higher wavenumbers is being depleted by the molecular viscosity.

Tables 3-5 summarize the results of direct simulations of compressible isotropic turbu-

lence for M0 = 0.1, 0.4 and 0.6, for t=0.1145 on three different grids _. Incompressible results

are included for comparison. On all the gricls, the compressible data converges to the in-

M0 E e

0.0 40.26 157.4

0.1 40.82 158.2

0.4 41.09 160.4

0.6 41.32 162.3

Table 3: Summary

age Mach numbers

IV. vl. °x
0.00

0.17

1.50

3.30

{½tr(Sk)) (M)M,=ax

-0.424 0.00 0.00

-0.440 0.07 0.21

-0.428 0.28 0.84

-0.406 0.43 1.26

of direct simulations on a 643 grid with initial aver-

of 0.0, 0.1, 0.4 and 0.6 at t=0.1145.

M0 E

0.0 40.35

0.1 40.49

0.4 40.79

0.6 41.04

Table 4: Summary

age Mach numbers

IV.
154.3 0.00

155.5 0.14

157.0 1.17

158.3 2.82

(_tr(Sk)) (M) M,,,,::
-0.506 0.00 0.00

-0.505 0.07 0.23

-0.493 0.28 0.93

-0.477 0.42 1.39

of direct simulations on a 963 grid with initial aver-

of 0.0, 0.1, 0.4 and 0.6 at t=0.1145.

compressible results as the Mach number is driven towards zero. As expected, the divergence

of velocity no longer vanishes, and is now an increasing function of M0.

¶A DNS at M0 = 0.8 was not performed on the 1283 grid.
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Mo E

0.0 40.29

0.I 40.39

0.4 40.78

Iv. vl,.=
153.98 0.00

154.84 0.14

156.54 1.11

(½tr(Sk)) (M)M,,,=

-0.521 0.00 0.00
-0.518 0.07 0.21
-0.505 0.28 0.86

Table 5: Summary of direct simulations on a 128 s grid with initial

average Mach numbers of 0.0, 0.1 and 0.4 at t---0.1145

While the dissipation is approximately the same on the two finer grids, the consistently

lower values on the coarsest grid confirm the previously stated conclusion that a 64 s grid

cannot resolve all the length scales. As a function of increasing Mach number, the trace of

Sk increases, the dissipation decreases, while the total kinetic energy increases very slightly.

The results in tables 3-5 are averages over several DNS runs with different initial seeds.

A given seed uniquely determines the initial velocity distribution, and therefore the pressure

and temperature fields. Variations of the seed are only necessary to eliminate the statistical

uncertainty due to the random velocity distribution. The distribution of velocity on two

different grid sizes are different even when the initial seed is the same.

Skewness is even more sensitive to the grid refinement than the dissipation as witnessed

by its decrease from a value of -0.505 to one of -0.521 on 96 a and 128 a grids respectively. This

might be a result of the greater sensitivity of the fluctuating velocity field spatial derivatives

to slight inaccuracies in the flow variables.

5.2. Data Analysis

Using the data generated from the previously discussed DNS of compressible homogeneous

turbulence at low Mach numbers, the proposed subgrid-scale (SOS) model is now validated.

Models relate the subgrid-scale stresses - which are not available to a large-eddy simulation

code - to the large scale velocities which are known. These velocities are simply the Favre-

filtered velocities introduced earlier. The Favre-filtered velocities are calculated by filtering

the resolved DNS velocity field with a Gaussian spatial filter of width A = AtAxf, where

Ax! is the grid spacing on the fine grid. For convenience, Ac and A! refer to the filter width

A non-dimensionalized with respect to the coarse and fine grid spacing respectively.

Perturbed velocity fluctuations on the fine grid are the difference between the fully re-

solved velocity and the filtered ones, given by

(7o)

From v' and _¢, subgrid-scale stresses based on DNS, refered to as exact, are calculated.
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These include the Leonard, cross and Reynolds subgrid-scale stresses given by Eqs. (20)-

(22). However, these subgrid-scale stresses themselves do not directly affect the evolution of

the system. The momentum equation is only influenced by the divergence of the subgrid-scale

stresses (i.e., the vector level). Similarly, _,. (V. T) (the scalar level) is a better represen-

tation of the dissipation terms in the energy equation than are the stresses. Consequently,

correlations are performed on the tensor, vector and scalar levels. Ideally, high correlations
are desired on all levels.

The data analysis proceeds in multiple stages. First, the exact stresses calculated from

the DNS are injected down to the coarse grid, along with the filtered velocities. The modeled

subgrid-scale stresses are then calculated (excluding the model constants) on the coarse grid.

Some variables must be filtered a second time (e.g. cross stress terms). Rather than calculate

them on the fine grid (which is not available to the large-eddy simulation codes), a Gaussian

filter is applied to _¢ on the coarse grid with a filter width of A=. Consistency between the

coarse and fine filter widths is achieved by insuring that

As Ns
A--_= _ (71)

where Nf and Arc are respectively the number of nodes along one direction of the fine and

coarse grids. This guarantees that the filtering on the coarse and fine grids is performed

over the same region in physical space. Derivative evaluations on both the coarse and the

fine grid are based on Fourier collocation. Calculations by McMillan and Ferziger (1979)

indicate that the model constants are sensitive to the accuracy of the derivative evaluations.

A general trend that has been observed is that the Smagorinsky constant is lowered when

derivative quantities are evaluated more accurately. Our constants are therefore expected to

lie in the lower range of the values obtained by McMillan (1980).

Next, the model constant, CR, is calculated. Unfortunately, the constants can be calcu-

lated by a wide variety of algorithms, each with its own merits. Moreover, for each algorithm,

the constants can be evaluated from tensor, vector or scalar information. Therefore, criteria

must be established to identify the best method. A key test is that L + C should be Galilean

invariant. To make use of this fact, an additional constant, Co, is introduced as an extra

factor in the subgrid-scale cross stress model. A self-consistent method of calculating the

constants must reproduce Co = 1 to satisfy the Oalilean invariance property stated above

(Speziale 1985). Additional tests are performed on coarse grids with varying degrees of

refinement which further decrease the number of choices. A thorough discussion of model

constants is the subject of the next subsection.

Once a single or a multiple set of model constants have been determined, the model

subgrid-scale stresses are calculated and correlated with the exact subgrid-scale stresses

calculated from the DNS after injection onto the coarse grid. The correlations are performed

for each type of subgrid-scale stress individually, and for the total stress (L + C + it). Strong

differences in the correlation coefficients relating total stresses are noticed depending on

whether or not the Leonard stresses are included. Finally, the correlations obtained from

the proposed model are compared with the linear combination model, which has been shown
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to be one of the best models available for incompressible isotropic turbulence. Correlation

coefficients are calculated based on the two pairs of constants that are obtained from the

above considerations. The set that is finally retained corresponds to the highest levels of

correlation of the total stress on the vector and scalar levels. These matters are treated more

completely in a later subsection.

To avoid a possible confusion of terminology when referring to wriables being compared

against each other, superscripts rn and e are sometimes used. They respectively refer to

modeled and exact (based on DNS) variables at the tensor, vector and scalar levels.

5.2.1. Model Constants

The proposed model given by equations (31) and (42) has two undetermined coefficients.

The constant, C'R, is associated with the modeled subgrid-scale Reynolds stress, R, while

Prw is associated with the thermal heat flux.

Although the cross stress model has no constant associated with it, it is nonetheless

multiplied by a constant Co. This is done in the hope of reducing the number of schemes

by which the constants can be calculated. A good model should reproduce a cross stress

constant of one to guarantee Galilean invariance. Once the constants have been determined,

Cc is set to one and forgotten. Because the flow is isotropic, constants are expected to

be the same for the three diagonal stress components, the three off-diagonal components

and the three vector components. Therefore, the values presented in the tables below are

averaged over the appropriate components. In the tables, D refers to averaged diagonal

components, OD to averaged off-diagonal components, V to averaged vector components

and _q to averaged scalar components. Similar averagings are performed for the correlation
coefficients.

The two constants (Ca and 6'c) are calculated using two techniques - each applied on

the tensor, vector and scalar levels. One method enforces equality of the rms levels of the

exact and modeled stresses. This is done for each individual subgrid-scale stress (i.e., the

subgrid-scale Reynolds stress and the cross stress). Hereafter this approach is referred to

as RMS. The second method utilizes multiple linear least square regression (LSQ) between

the exact (18) and the modeled (31) total subgrid-scale stresses to determine the constants.

Table 6 summarizes the results obtained from incompressible data. The three cases presented

are identical except for the initial random number seed. The constants are independent of

the detailed velocity statistics. These results are based on a vector level comparison between

the modeled and exact stresses. Both RMS and LSQ produce Cc close to unity as required.

Unfortunately this prevents a rational choice from being made between the two approaches.

A more complete set of LSQ constants is presented in table 7. They are computed at Mach

numbers of 0.0, 0.1, 0.4 and 0.6 on the tensor, vector and scalar level. Computations are

performed on a coarse grid of 163.
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Seed
1
2
3

LSQ

OR Oc
0.012 1.04

0.012 1.03

0.012 1.03

R,MS

OR Oc
0.023 1.03

0.022 1.04

0.022 1.03

Table 6: Model constants calculated by LSQ and RMS between exact

and modeled total stresses (L + C +R). Results are based on three iden-

tical incompressible simulations except for the random initial velocity

distributions. Calculations are on the vector level on a 16 3 grid.

At first glance, 6'o is near unity at both the scalar and vector levels. However whereas

on the vector level, the constant remains within 4% of unity for all Mach numbers, this is

not the case on the scalar level where Co is a decreasing function of Mach number. This

trend is present in the data generated from both random seeds. Although not presented

here, the rlns cross stress model constant is also near unity when calculated based on vector

level stresses. Therefore, a preferred method for the determination of the model constants

is still not possible.

5.2.2. Filter Width and Grid Coarseness

Confirmation of the numerical evidence presented by McMillan and Ferziger (1979) that

A= = 2 is the best filter width is given in table 8 (M0 = 0.1). The criterion used to

determine the validity of the filter width is that C rims must remain close to unity on the

vector level. Only when A= - 2 is Co near one. Similar results hold for LSQ constants. The

constants also vary with respect to the coarse grid on which the LES is to be performed.

Table 9 summarizes the model LSQ and R,MS constants evaluated from modeled stresses

calculated on 163 and 323 grids on the vector level. The data (Mo = 0.1) shows that CR

varies by 30% when the grid size on which the modeled stresses are calculated ranges from

163 to 323. On the other hand, large eddy simulations using finite-difference algorithms

might be performed on grids as large as 1283. Unless a subgrid-scale model is found which

produces constants independent of the coarse grid size, LES simulations will run the risk

of producing the wrong results. Perhaps a more complicated dependence of the modeled

subgrid-scale R,eynolds stresses on A is required.

The best model constants will produce the highest correlations between the modeled and

exact subgrid-scale stresses on all levels (tensor, vector and scalar). Based on the previous

discussion, only constants calculated on a vector level are adequate because they produce

a Oc of unity. Unfortunately, a clear cut choice between R.MS and LSQ constants cannot

be made because Oc (on the vector level) is nearly one in both cases. Rather than make
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an arbitrary choice, both sets of constants are considered when correlating exact against

modeled stresses. For reference, the constants used henceforth are

sq = 0.012 (72)
Ms = 0.023. (73)

M0

Cc

CR

D

V

S

D

V

S

Seed 1

0.0 0.1 0.4 0.6

1.32 1.32 1.32 1.31

1.04 1.04 1.02 1.00

1.00 1.00 0.95 0.873

0.018 0.018 0.018 0.018

0.012 0.012 0.012 0.012

0.015 0.015 0.015 0.014

Seed 2

0.0 0.6

1.32 1.31

1.04 1.00

0.971 0.934

0.016 0.015

0.012 0.012

0.015 0.015

Table 7: LSQ model constants. Filter widths are A f = 12 and Ac = 2.

/k f

Ac

CR

Cc

LSQ

6 12 24

1 2 4

0.007 0.012 0.020

0.31 1.03 1.33

RMS

6 12 24

1 2 4

0.019 0.023 0.034

0.82 1.03 1.13

Table 8: LSQ and RMS model coefficients between exact and modeled

stresses on the vector level at M0 = 0.1. Results are obtained with fine

filter widths of 6, 12 and 24 while maintaining the proper ratio of 6

between fine and coarse widths. The coarse grid is 163 .

5.2.3. Correlations

Correlation coefficients have long been a preferred diagnostic tool for estimating the reliability

of the modeled stresses. However, the subgrid-scale stresses have been separated into various

components (L, C, R), each modeled separately and although the correlation of any of these

components against their models might be excellent, it is still possible for the correlation

of the exact total stress against the modeled total stress to be less impressive. Such is the

case, for instance, when two stress components have opposite signs and partially cancel each
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Grid
163
323

LSQ RMS
CR cc CR cc

0.0125 1.03 0.023 1.03

0.0094 1.03 0.013 1.02

Table 9: LSQ and RMS model constants based on subgrid-scale stresses

evaluated on 16 3 and 32 z coarse grids.

other out. As a final note, before the specific correlation coefficients are presented, one must

always be attentive to the actual relationship between the exact and the modeled variable,

even when the correlation coefficient is relatively high (say, above 70%). A correlation

coefficient as high as 70% may not be as good as

between the functions y = z and y = exp(-z) in

although they are qualitatively different functions[

deemed good if the correlation coefficient is above,

it seems. For example, the correlation

the interval [0, 1] is approximately 70%

As a consequence, correlations are only

say, the 90% level.

For convenience, the compressible subgrid-scale

DRij = 2CR_ A2 (SktSkt) 1/2

zRij = 0

model is restated here:

(L, 1- (74)

(75)

(76)

The correlation coefficients presented in table 10 between exact and modeled R and C,

are independent of the model constants. The correlation coefficients are insensitive to the

average Mach number variation. The neglect of zRij appears to be a good approximation; the

direct simulations show it to be several orders of magnitude smaller than the thermodynamic

pressure. For example, for all of the compressible isotropic turbulence simulations conducted

in this study,

(v.
< 3 x 10 -a (77)

and, hence, the effect on the isotropic part of the Reynolds stress tensor is dominated by the

thermodynamic pressure.

In most of the literature on subgrid-scale models, the Leonard stress has been omitted

from the total stress correlations on the grounds that it is calculated exactly (Bardina,

Ferziger, and Reynolds 1983, McMillan 1980, McMillan and Ferziger 1979). However, it has

recently been shown by Speziale (1985) that the combination L + C is Galilean invariant,

while the Leonard and cross stresses, individually, are not. Therefore we feel that correlations

of the total stress should include the Leonard stress. Table 11 summarizes the correlation

coefficients between the total stress including and excluding the Leonard stress. Results
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M0

R

C

0.1 0.4 0.6

D 31 31 31

OD 26 26 25

V 22 22 22

45 45 45

D 89 89 89

OD 91 91 91

V 80 80 80

S 75 74 72

Table 10: Correlations between exact and

at Mach 0.1, 0.4 and 0.6.

modeled stresses, R and C,

are presented at Mach 0 and Mach 0.6. When the Leonard stresses are left out, correlation

coefficients similar to those of Bardina are obtained on all levels. However, the inclusion of L

decreases the correlations at the vector level by approximately 30%. Table 11 substantiates

that the correlation coefficients (with and without L) are nearly independent of the initial

average Mach number.

Correlation coefficients between (C q- R) e and various combinations of the modeled

stresses using constants calculated by LSQ and RMS are summarized in table 12. The

second column indicates the model against which the total stress is being compared. Al-

though at first glance RMS based constants perform better at the tensor level when the

total modeled stress is considered, at the vector and scalar levels, the trend is reversed.

Correlations at the vector and scalar level are higher by 4% using the LSQ constants.

When the constants are selected based on LSQ, table 12 indicates that the correlations

on all levels are highest when all modeled components are included. However, the dynamic

evolution of the large scale velocities only brings into play the stresses on the vector and

scalar level. Therefore the coefficients which produce the maximum correlations of total

stress on these two levels should be chosen. This leads to an optimum choice of

vR = 0.012 (78)

calculated by least squares fit of the total stress on the vector level.

Conversion of C'R to the standard form currently used in incompressible LES _ produces

a Smagorinsky constant of 0.092. McMillan (1979) obtained a value of Cs = 0.10 when

spectral collocation derivative computations were employed. This constant corresponds to

a scalar level evaluation based on RMS. On the vector level, McMillan calculated a higher

¶In a number of reports (McMillan and Ferziger 1979, Bardina et al. 1983), the subgrid-scale Reynolds

stress model is proportional to C_. In these cases, the relationship between Cs and CR is CR = v_C_.
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D

OD

V

S

Mo = 0.0 Mo= 0.6

L+C+R C+R L+C+R C+R

93 82 93 81

80 85 79 84

46 72 46 71

56 73 56 74

Table 11: Comparison of correlation coefficients of the exact total stress

versus its model. The modeled terms are computed on a 163 coarse grid.

Each case is presented with and without the inclusion of the Leonard

subgrid-scale stress terms (calculated exactly). Both the incompressible
and the M=0.6 case are shown to illustrate the weak influence of Mach

number on the correlation coefficients with Ca = 0.012.

Least squares RMS

CR= 0.0122 Ca= 0.023

Exact Model D OD V S D OD V S

C +R C 78 82 68 62 78 82 68 62

C+R 81 84 71 70 88 83 67 67

Table 12: Correlation of the exact total stress (C + R) * with various

models. The modeled stresses are defined in equations (74)-(76).

• kr

,- ".
r. r

Smagorinsky constant of 0.13. This value can be obtained from the present data by using

DRaMs instead of oFt LsQ. However as shown above, the correlations of the total subgrid-

scale stress would be lower.

Initial tests of the subgrid-scale heat flux model produced a turbulent Prandtl number

in the range of 0.4 to 0.5. For this initial study, we take

Prr = 0.5 (79)

which is a value that has been used in previously published large-eddy simulations of turbu-

lent flows with thermal convection (cf. Eidson 1985). A more accurate calculation of PrT

could be accomplished in a compressible flow with significant mean temperature gradients;

t'his is beyond the scope of the present study and must await future research.
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6. Large-Eddy Simulation of Compressible Isotropic Turbulence

Now, in order to demonstrate the efficacy of the subgrid-scale models derived in this paper,

a large-eddy simulation of compressible isotropic turbulence is conducted. Since most high-

speed compressible turbulent flows have significant regions where the turbulence statistics are

quasi-incompressible, it is important that the models perform well for weakly compressible

turbulence - the type of flow considered in the last section for the a priori tests. However,

it is well known that a priori tests only provide a relatively weak gauge for the performance

of subgrid-scale models in an actual large-eddy simulation (see Hussaini, Speziale and Zang

1990). It is therefore important to examine their performance in an actual large-eddy sim-

ulation, particularly for a case where significant compressibility effects are exhibited in the

turbulence statistics.

Direct simulations of compressible isotropic turbulence were conducted corresponding to

the initial conditions Re = 250, (M:) lo/2 -- 0.1, (p,.,-,,o)O = O, (T,.,,,,)o = 0.0626 and two values

of X0:0 and 0.2 which, respectively, correspond to initial values for (R_)0 of 30.0 and 26.3.

Here, X = EC/( Ex-]- Ee) where E 1 and E c are the incompressible and compressible parts of

the turbulent kinetic energy, respectively. The direct numerical simulations were performed

on a 963 mesh. Characteristic energy and dissipation spectra associated with the DNS are

shown in figures 8 (a)-(c) and 9 (a)-(c) for X0 = 0 and X0 = 0.2, respectively. Figure 8 (b)

clearly shows that X remains very small for all time, with only very slight modification of the

energy spectrum in time. In contrast, figure 9 (b) shows an initial cascade of the spectrum

towards the smaller scales, followed by a strong energy dissipation at the smaller scales of viv.

The dissipation spectra (k_E(k)) shown in figures 8 (a) and 9 (a) demonstrate that both the

small and large scales are well resolved. Comparing figures 8 (c) and 9(c), the incompressible

energy E I is the same at t -- 0 and t -- 1.6, but is influenced by compressibility effects at

the intermediate times. This influence is characterized by a slight decrease in E x for X0 > 0.

Integral properties of these two cases are plotted in figures 10 (a)-(e). These figures

contrast the two runs corresponding to X0 = 0 and Xo = 0.2. The higher compressibility

has a variety of effects on the flow. The total kinetic energy decays at a slightly slower rate,

while both the skewness and the flatness are decreased. In other words, finite compressibility

drives the flow more towards a Gaussian state. Both the integral scale L1 and the Taylor

microscale )_11 become smaller as X0 increases. Lastly, the decay rate of the microscale

Reynolds number is slower for finite X0. A more detailed study of these effects awaits future

research. It would be particularly useful to compute these statistical quantities based on the

solenoidal and irrotational components of velocity.

As noted by Frisch and Orszag (1990), the three dimensional vorticityis formed of

tubular-like structures. This is graphically represented in figure 11 which shows a volume

rendering of up2. Volumetric rendering is a visualization technique whereby rays are projected

from the eye through the flow (which emits and absorbs light). The tubular structures of

vorticity are contrasted with the spherical structure of (V. v) 2 shown in figure 12. This

difference is to be expected since the dilatation satisfies an isotropic wave equation to lead-

.r

. g
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ing order which shows no preferential direction. On the other hand, the vorticity stretching

occurs along the axis of the vorticity vector, which then becomes a preferred direction.

The results for the direct simulation with the strongest compressibility effects (X0 = 0.2)

were filtered and injected onto a coarse 323 grid for comparison with an LES which was also

performed on a 323 grid using the subgrid-scale models derived herein. In this manner, a

direct comparison can be made between the results of the LES and the direct simulation

for a flow where the turbulence statistics exhibit significant compressibility. The following

turbulence statistics were compared:

( Ovi _ 2
(1) the integrated average of w,w_ and \_]

(2) the integrated average total and isotropic vortex stretching (denoted by u_Ni_oi and

_2V. v, respectively),

(3) the mean turbulence Mach number defined by (M_) 1/2

(4) the mean compressible, incompressible and total turbulent kinetic energy denoted by

E v, E x and ETOT, respectively,

(5) the level of compressibility X defined by X = EG/E'ToT, and

(6) the rms of the thermodynamic pressure, density, and temperature denoted by Pr,,,,,

pr,,,°, and T_,,,,, respectively.

These quantities represent a good choice of turbulence statistics to monitor the effects of

compressibility.

In figure 13 (a)-(f), a direct comparison of these statistics for the DNS and LES is made

for a filter width A! = 2. It is clear that the LES does an excellent job in reproducing

the results of the DNS with the possible exception of X. It should be noted that X exhibits

acoustic oscillations and hence is a difficult quantity to predict accurately; nonetheless, the

LES yields results that are in good qualitative agreement with the direct simulation. The

most striking result is how well the compressible turbulent kinetic energy and dilatational

terms are captured.

It was found that a change in the filter width A s to 1 or 3 - and an adjustment of the

SOS model constants CR and PrT of up to 25% - only led to a mild degradation of the

results. However, the subgrid-scale models did play a crucial role in obtaining the accurate

results shown in figure 13 (i.e., a 323 direct simulation is substantially under-resolved). To

illustrate this point, the results of a direct simulation on the coarse 323 grid (i.e., an LES

for A s = 0) is shown in figure 14 for the same test case. It is clear from this figure that the

coarse grid DNS does a poor job in capturing the incompressible as well as the compressible

turbulence statistics. Consequently, it is the adequate performance of the subgrid-scale
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models in draining the proper amount of energy from the filtered fields (to account for the

presence of unresolved scales) which leads to the excellent results obtained in figure 13.

Considering the degree of compressibility exhibited by the turbulence statistics for the test

case considered in this section, it would appear that the feasibility of the proposed subgrid-

scale models has been established. A more extensive parametric study of this subgrid-scale

model is under investigation by Dahlburg et al. (1990).

7. Conclusion

New subgrid-scale models for compressible turbulence have been developed and tested against

the results of direct numerical simulations of compressible isotropic turbulence. These com-

pressible subgrid-scale models, which were based on the Favre-filtered equations of motion

for an ideal gas, contain two dimensionless constants and reduce to the linear combination

model of Bardina, Ferziger and Reynolds (1983) in the incompressible, isothermal limit. The

subgrid-scale stress model constant was found to assume the value of CR = 0.012 which gives

rise to correlations between the exact and modeled stresses that were above 70% on the ten-

sor, vector and scalar levels - a correlation which compares favorably with those obtained

in earlier work on the subgrid-scale modeling of incompressible turbulent flows. Another en-

couraging feature lies in the fact that these constants and their associated correlations were

found to be comparatively insensitive to a mean Mach number in the range 0 < M0 < 0.6.

The results of a coarse grid 323 LES of compressible isotropic turbulence conducted with

the subgrid-scale models derived in this paper were shown to be in excellent agreement with

those obtained from a 963 direct simulation. These results are extremely encouraging since,

for the case considered, on average 25_ of the turbulent kinetic energy was compressible.

Furthermore, the ability for the LES to accurately capture the dilatational statistics of the

flow was quite surprising.

Future research will be directed on several fronts. The large-eddy simulation of a com-

pressible turbulent flow with mean temperature gradients could lead to refinements in the

subgrid-scale heat flux model. Furthermore, the large-eddy simulation of compressible, ho-

mogeneous shear flow could yield new insights into the performance of these subgrid-scale

models. Near-wall modifications will also be implemented that allow for the large-eddy sim-

ulation of compressible, wall-bounded turbulent flows. While further improvements are still

possible, we believe that the essential foundation for the large-eddy simulation of compress-

ible turbulent flows has been established in this study. With future research, compressible

LES could have a profound impact on the analysis of supersonic and hypersonic flows of

aerodynamic importance.
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Appendix

Initial energy spectrum

Both the incompressible and compressible direct simulations impose a specified energy

spectrum on the initial random velocity distribution. For comparative purposes, the data

was obtained from tabular data found in Comte-Bellot and Corrsin (1971). They tabulate

the function Ell(k) which is related to the energy spectrum E(k) by

_Lk dk J '

Unfortunately the data is noisy, so a least squares fit is performed on log Eli, expressed as

a fourth order polynomial in log k. The final form obtained for E11 is

1og(E_1) = 2.64359 - 0.72602(Iogk) - 0.32585(Iogk) 2

÷0.03525(log k) 3 - 0.02344(log k) 4. (A2)

Calculation of model constants

Before correlating the total exact subgrid-scale stress against its model, the model con-

stants must be determined. There are many ways of accomplishing this among which two

are retained. The total modeled stress is written as a linear combination of modeled terms

while the exact total stress is simply

n

i=1

T" = _]_-_. (A4)
i----I

The unknown constants to be determined are the C_. The first approach adopted is to

calculate the root mean square of the pairs C_T_ and r_ and equate them for each value of
i. The constants thus take the values

C_- %" . (AS)

This method is referred to by RMS in the text.

A least square method applied to the total stress as a whole is an alternative approach.

In this case, the norm
t_

II_'' - _"II _ = II_(ff - c,_-£)il_ (A6)
i=l

is minimized with respect to the coefficients Ci. This gives rise to a linear system in the

coefficients which can be solved by direct methods if the number of constants is not too

large. For the subgrid-scale model considered in the text, n = 3.
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Definitions

For reference purposes, several statistical definitions are provided here. All variables are

defined on a three-dimensional grid and are subscripted by a single index / for convenience.

The average of a function _'i is
1 N

(._") = _- _ ,._',. (A7)

As a function of the average, the rms of .T is

_- o = _/((._-_ (._'->)2). (AS)

Correlation coefficients are fundamental in evaluating subgrid-scale models. The correlation

coefficient between two functions 2"and g is

(Yg) (A9)
cc ,g) = y.m.g.,..
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Fig. 11 Volumetric representation of w2. Parameters are identical to those of Fig. 10.

Fig. 12 Volumetric representation of (_. v) _. Parameters are identical to those of Fig. 10.
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