1,577 research outputs found
Latitudinal Variation in Seasonal Activity and Mortality in Ratsnakes (Elaphe obsoleta)
The ecology of ectotherms should be particularly affected by latitude because so much of their biology is temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will have to modify their behavior in response to climate change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio tracked in Ontario, Illinois, and Texas, a latitudinal distance of \u3e 1500 km, to test predictions about how seasonal patterns of activity and mortality should vary with latitude. Despite pronounced differences in temperatures among study locations, and despite ratsnakes in Texas not hibernating and switching from diurnal to nocturnal activity in the summer, seasonal patterns of snake activity were remarkably similar during the months that snakes in all populations were active. Rather than being a function of temperature, activity may be driven by the timing of reproduction, which appears similar among populations. Contrary to the prediction that mortality should be highest in the most active population, overall mortality did not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent with temperature limiting the northern distribution of ratsnakes. This result was opposite that found in the only previous study of latitudinal variation in winter mortality in reptiles, which may be a consequence of whether or not the animals exhibit true hibernation. Collectively, these results suggest that, at least in the northern part of their range, ratsnakes should be able to adjust easily to, and may benefit from, a warmer climate, although climate-based changes to the snakes\u27 prey or habitat, for example, could alter that prediction
Linking Snake Behavior to Nest Predation in a Midwestern Bird Community
Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes\u27 preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological traps merits further study
Hydraulic architecture of palms
Journal ArticleThe water transport and storage system of palms is adapted to maintain the primary stem xylem functional over the life of the shoot, and in spite of severe drought. However, our structural information far exceeds our knowledge of vascular function, and these functional considerations bring more questions than answers. The tendency to generalize from limited data on a few species begs the question of how the hydraulic parameters discussed vary between palms with different growth forms and ecologies
Quantum Theory and Time Asymmetry
The relation between quantum measurement and thermodynamically irreversible
processes is investigated. The reduction of the state vector is fundamentally
asymmetric in time and shows an observer-relatedness which may explain the
double interpretation of the state vector as a representation of physical
states as well as of information about them. The concept of relevance being
used in all statistical theories of irreversible thermodynamics is shown to be
based on the same observer-relatedness. Quantum theories of irreversible
processes implicitly use an objectivized process of state vector reduction. The
conditions for the reduction are discussed, and I speculate that the final
(subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18
page
Encouraging versatile thinking in algebra using the computer
In this article we formulate and analyse some of the obstacles to understanding the notion of a variable, and the use and meaning of algebraic notation, and report empirical evidence to support the hypothesis that an approach using the computer will be more successful in overcoming these obstacles. The computer approach is formulated within a wider framework ofversatile thinking in which global, holistic processing complements local, sequential processing. This is done through a combination of programming in BASIC, physical activities which simulate computer storage and manipulation of variables, and specific software which evaluates expressions in standard mathematical notation. The software is designed to enable the user to explore examples and non-examples of a concept, in this case equivalent and non-equivalent expressions. We call such a piece of software ageneric organizer because if offers examples and non-examples which may be seen not just in specific terms, but as typical, or generic, examples of the algebraic processes, assisting the pupil in the difficult task of abstracting the more general concept which they represent. Empirical evidence from several related studies shows that such an approach significantly improves the understanding of higher order concepts in algebra, and that any initial loss in manipulative facility through lack of practice is more than made up at a later stage
The Ontology of Intentional Agency in Light of Neurobiological Determinism: Philosophy Meets Folk Psychology
The moot point of the Western philosophical rhetoric about free will
consists in examining whether the claim of authorship to intentional, deliberative
actions fits into or is undermined by a one-way causal framework of determinism.
Philosophers who think that reconciliation between the two is possible are known as
metaphysical compatibilists. However, there are philosophers populating the other
end of the spectrum, known as the metaphysical libertarians, who maintain that claim
to intentional agency cannot be sustained unless it is assumed that indeterministic
causal processes pervade the action-implementation apparatus employed by the agent.
The metaphysical libertarians differ among themselves on the question of whether the
indeterministic causal relation exists between the series of intentional states and
processes, both conscious and unconscious, and the action, making claim for what has
come to be known as the event-causal view, or between the agent and the action,
arguing that a sort of agent causation is at work. In this paper, I have tried to propose
that certain features of both event-causal and agent-causal libertarian views need to be
combined in order to provide a more defendable compatibilist account accommodating
deliberative actions with deterministic causation. The ‘‘agent-executed-eventcausal
libertarianism’’, the account of agency I have tried to develop here, integrates
certain plausible features of the two competing accounts of libertarianism turning
them into a consistent whole. I hope to show in the process that the integration of these
two variants of libertarianism does not challenge what some accounts of metaphysical
compatibilism propose—that there exists a broader deterministic relation between the
web of mental and extra-mental components constituting the agent’s dispositional
system—the agent’s beliefs, desires, short-term and long-term goals based on them,
the acquired social, cultural and religious beliefs, the general and immediate and
situational environment in which the agent is placed, etc. on the one hand and the
decisions she makes over her lifetime on the basis of these factors. While in the
‘‘Introduction’’ the philosophically assumed anomaly between deterministic causation
and the intentional act of deciding has been briefly surveyed, the second section is
devoted to the task of bridging the gap between compatibilism and libertarianism. The
next section of the paper turns to an analysis of folk-psychological concepts and
intuitions about the effects of neurochemical processes and prior mental events on the
freedom of making choices. How philosophical insights can be beneficially informed
by taking into consideration folk-psychological intuitions has also been discussed,
thus setting up the background for such analysis. It has been suggested in the end that
support for the proposed theory of intentional agency can be found in the folk-psychological intuitions, when they are taken in the right perspective
Polymer depletion interaction between two parallel repulsive walls
The depletion interaction between two parallel repulsive walls confining a
dilute solution of long and flexible polymer chains is studied by
field-theoretic methods. Special attention is paid to self-avoidance between
chain monomers relevant for polymers in a good solvent. Our direct approach
avoids the mapping of the actual polymer chains on effective hard or soft
spheres. We compare our results with recent Monte Carlo simulations [A. Milchev
and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for
the depletion interaction between a spherical colloidal particle and a planar
wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and
P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe
Bacteroides fragilis requires the ferrous-iron transporter FeoAB and the CobN-like proteins BtuS1 and BtuS2 for assimilation of iron released from heme
The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron
transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 doublemutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the
periplasmic space to make iron available for cellular functions
Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas)
The impact of water deficit on stomatal conductance (gs), petiole hydraulic conductance (Kpetiole), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψx) of –0.95 MPa, and up to 90% loss of conductivity at a Ψx of –1.5 MPa. Kpetiole described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's Kpetiole levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70–90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a ‘hydraulic fuse’, thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in Kpetiole and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
- …