25 research outputs found

    In vivo and in vitro Studies of the Proto-oncogene Evil

    Get PDF
    Ecotropic viral integration site 1 (Evi1) is a zinc finger containing nuclear protein, which is involved in transcriptional control. Although Evi1 expression during normal embryonic development is essential for survival, the level of expression appears less necessary in the later stages of development. Inappropriate “re-expression” of Evi1 in patient’s hematopoietic precursor cells due to chromosomal abnormalities has been found to be a contributing factor in the development and progression of malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML)

    Mapping and Functional Characterisation of a CTCF-Dependent Insulator Element at the 3′ Border of the Murine Scl Transcriptional Domain

    Get PDF
    The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3′ element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3′ end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs

    PLEKHS1 drives PI3Ks and remodels pathway homeostasis in PTEN-null prostate

    Get PDF
    The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells

    Get PDF
    Erasure of DNA methylation and repressive chromatin marks in the mammalian germline leads to risk of transcriptional activation of transposable elements (TEs). Here, we used mouse embryonic stem cells (ESCs) to identify an endosiRNA-based mechanism involved in suppression of TE transcription. In ESCs with DNA demethylation induced by acute deletion of Dnmt1, we saw an increase in sense transcription at TEs, resulting in an abundance of sense/antisense transcripts leading to high levels of ARGONAUTE2 (AGO2)-bound small RNAs. Inhibition of Dicer or Ago2 expression revealed that small RNAs are involved in an immediate response to demethylation-induced transposon activation, while the deposition of repressive histone marks follows as a chronic response. In vivo, we also found TE-specific endosiRNAs present during primordial germ cell development. Our results suggest that antisense TE transcription is a “trap” that elicits an endosiRNA response to restrain acute transposon activity during epigenetic reprogramming in the mammalian germline.ISSN:1934-5909ISSN:1875-977

    A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a

    Get PDF
    AbstractThe transcription factor ecotropic viral integration site 1 (Evi1) is associated with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) in patients due to chromosomal aberration of chromosome 3. Here we show that Evi1 interacts with the histone methyltransferase SUV39H1. The interaction requires the N-terminal part of Evi1 and the H3-specific histone methyltransferase domain, SET, of SUV39H1 without Evi1 having an inhibitory effect on SUV39H1 methyltransferase activity. Presence of SUV39H1 enhances Evi1 transcriptional repression in a dose dependent manner. In addition, Evi1 also interacts with another histone methyltransferase, G9a, but not with SET9. Our data establish an epigenetic role of Evi1 in cell transformation by recruiting higher order chromatin remodeling complexes

    Additional file 1: Figures S1–S5. of SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells

    No full text
    Figure S1. SETDB1 regulates ERV silencing in naïve ESCs. Figure S2. Removal of TET2 dampens SETDB1-mediated IAP activation in naïve cells. Figure S3. SETDB1-mediated IAP activation is not linked to DNA methylation changes. Figure S4. SETDB1 depletion does not lead to DNA methylation changes. Figure S5. TET2 activity is associated with loss of H4R3me2s at IAPs. (PDF 828 kb
    corecore