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Abstract The transcription factor ecotropic viral integration
site 1 (Evi1) is associated with acute myeloid leukemia (AML)
and myelodysplastic syndrome (MDS) in patients due to
chromosomal aberration of chromosome 3. Here we show that
Evi1 interacts with the histone methyltransferase SUV39H1.
The interaction requires the N-terminal part of Evi1 and the
H3-specific histone methyltransferase domain, SET, of
SUV39H1 without Evi1 having an inhibitory effect on SUV39H1
methyltransferase activity. Presence of SUV39H1 enhances Evi1
transcriptional repression in a dose dependent manner. In addi-
tion, Evi1 also interacts with another histone methyltransferase,
G9a, but not with SET9. Our data establish an epigenetic role of
Evi1 in cell transformation by recruiting higher order chromatin
remodeling complexes.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Ecotropic viral integration site 1 (Evi1) encodes a zinc finger

transcriptional regulator which has been identified as a com-

mon virus integration site in murine leukemia [1]. In humans,

aberrant expression of Evi1 has been observed in myeloprolif-

erative disorders including myelodysplastic syndrome (MDS)

and acute myeloid leukemia (AML), particularly in patients

with translocations or inversions involving chromosome 3q26

[2]. In vitro and in vivo studies support the notion that inap-

propriate expression of Evi1 plays a critical role in the develop-

ment of MDS and AML. Overexpression of Evi1 blocks the

differentiation of myeloid progenitor cell line 32Dcl3 towards

mature neutrophils [3], whereas in early erythroid lineage cell

line model 32DEpo1 overexpression of Evi1 diminishes eryth-

ropoietin sensitivity [4].

Evi1 contains two DNA binding motifs. The N-terminal

part of the protein possesses a domain containing seven zinc

fingers, which recognizes GACAAGATAA(GATAA) nucleo-

tide sequences, whereas a region of three zinc fingers at the

C-terminus binds GAAGATGAG sequences [5–7]. One of

the possible mechanisms that may explain the oncogenic effect
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of Evi1 is the direct binding and interaction with putative tar-

get genes [8,9]. Another possible mechanism of transformation

may be through complex formation with other proteins that

are critical for transcriptional regulation. In fact, Evi1 has

been shown to interact with several transcriptional regulators

like Smad3, HDAC�s, and CtBP, to mediate transcriptional

repression [10–14].

In recent years, the interest in post-translational modifica-

tions of histone tails has unveiled the important role of chro-

matin remodeling in transcriptional regulation. Modifications

at specific histone residues have important biological effects

on transcription [15]. Methylation has been one of the first

modifications shown to play an important role in chromatin

regulation. Histone H3 methylation at different lysine residues

by specific methyltransferases has been linked to activation

and silencing of transcription [16–18]. The first protein demon-

strated to possess methyltransferase specificity towards histone

H3 lysine 9 (H3-K9) was the mammalian SUV39H1 enzyme, a

homologue of Schizosaccharomyces pombe Clr4 and Drosoph-

ila Su(Var)3.9 [19]. This preferential methylation of H3 de-

pends on the SET domain (Suppressor of Variegation,

Enhancer of Zeste and Trithorax [20]) of SUV39H1, a 130

amino acid domain that is conserved among different species.

In addition to SUV39H1, several other methyltransferases

have been identified, e.g. SET7, SET9 or G9a, which display

methylation activities specific to histone H3-lysine 4, lysine 9

and lysine 27 [16–18,21].

Here we investigate whether Evi1 can form a complex with

histone methyltransferases and show that it physically interacts

with SUV39H1. This interaction involves the SET domain of

SUV39H1 and the N-terminus of Evi1. These results establish

that Evi1 can act as a transcriptional regulator that is able to

form higher order complexes with histone methyltransferases

and thereby influence the transcriptional repression of putative

target genes.
2. Materials and methods

2.1. Expression constructs
A FLAG or an HA epitope tag was fused in frame with the first

ATG of Evi1 cDNA and cloned into the pCMV mammalian expres-
sion vector (Clontech, Palo Alto, CA). All deletion mutants were gen-
erated from the original cDNA of FLAG-Evi1 using available
restriction sites (available upon request). Full length SUV39H1 and
its mutants were a kind gift from Dr. A.H. Peters (IMP, Vienna,
Austria). All SUV39H1 constructs were tagged with triple-Myc at
the amino terminus. The pCMV-FLAG-G9a expression vector was a
kind gift from Dr. I. Talianidis (Institute of Molecular Biology & Bio-
technology, Crete, Greece) and has been described previously [22]. The
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Evi1 interacts with SUV39H1 via its N-terminal zinc finger domain. (A) Schematic representation of SUV39H1 and Evi1. Protein extracts
from cells transiently transfected with Myc-SUV39H1 and HA-Evi1 constructs were immunoprecipitated with anti-Myc (left panel) or anti-HA (right
panel) antibodies followed by Western blot (WB) analysis. In control experiments, immunoprecipitations were performed with lysates that were
transfected with HA-Evi1 alone (left panel) or Myc-SUV39H1 alone (right panel). Ten percent of total protein lysates were used as input for WB. (B)
Cells were co-transfected with Myc-SUV39H1 and HA-Evi1 and stained with anti-Myc and anti-HA antibodies followed by secondary TRITC (Red)
and FITC (Green) staining, respectively. Merged images revealed the association of both proteins in speckled structures of the nucleus. (C) Diagram
representing full length Evi1 and various mutants used in the mapping analysis with full length SUV39H1. Evi1 domains: zinc fingers (ZF) 1–7, RD
(repression domain), ZF 8–10, AD (acidic domain). In all constructs the Tag was cloned such that it was expressed at the N-terminus of the proteins.
(D) Full length Myc-SUV39H1 was transiently transfected with full length FLAG-Evi1 or with one of its mutants. Immunoprecipitation was
performed using an anti-Myc antibody. Proteins were detected by WB analysis using an anti-FLAG antibody. Ten percent of total protein lysates
were used as input for the WB analysis and are depicted in the lower panel.
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cDNA of SET9 was amplified from the human cell line HL-60 using
Pfu polymerase and cloned into a pCMV-FLAG expression vector
to generate a pCMV-FLAG-SET9 construct.

2.2. Immunoprecipitation, Western Blot, protein purification, and in vitro
histone methyltransferase (HMTase) assay

2 · 106 phoenix E (uE) cells were seeded in 100 mm dishes (Becton
Dickinson, Franklin Lakes, NJ) and cultured in Dulbecco�s modified
Eagle�s medium (DMEM, Life Technologies, Paisley, UK) supple-
mented with 10% FCS and transfected with 20 lg DNA using calcium
phosphate co-precipitation [23]. Cells were harvested after 48 h,
washed with ice-cold PBS and lysed in ice-cold lysis buffer (20 mM
Tris, pH 8.0, 137 mM NaCl, 10 mM EDTA, 100 mM NaF, 1% NP-
40, 10% glycerol) containing protease inhibitor mix and Pefablock
(Roche, Zwijndrecht, NL). Protein complexes were incubated over-
night at 4 �C. Proteins bound to sepharose G-beads were collected,
washed extensively with ice-cold lysis buffer and resuspended in 1· SDS
Laemmli buffer [24]. Complexes were denatured, separated on an
8–10% SDS–PAGE gel and transferred to nitrocellulose membrane
(Schleicher & Schuell, Dassel, Germany). Primary antibodies were
detected with a secondary horseradish peroxidase-conjugated antibody
(Dako Diagnostic BV, Denmark) and visualized by enhanced
chemiluminescence (ECL, Boston, MA). HMTase activity was assayed
as described previously [21]. Proteins were visualized by staining SDS–
PAGE gels with Coomassie Brilliant Blue R-250 (N.V. Life Technolo-
gies S.A., Merelbeke, NL).

2.3. Immunofluorescence microscopy
COS-7 cells were grown on cover slips and transfected with equal

amount (4 lg) of Myc-SUV39H1 and HA-Evi1 constructs using the
FuGENE transfection reagent (Roche, Zwijndrecht, NL). Forty-eight
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representations of SUV39H1 and its mutants. (B) Full length Myc-SUV39H1
Immunoprecipitation was performed using an anti-FLAG antibody. Proteins
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transfected with HA-Evi1 and Myc-SUV39H1 or HA-Evi1 alone. Proteins
determined by Ponceau S staining (bottom panel).
hours post-transfection, cells were washed with cold PBS and pro-
cessed as described previously [25]. Cells were stained with anti-HA
and anti-Myc primary antibodies (Santa Cruz Biotechnology) and
tetramethylrhodamine isothiocyanate (TRITC) and fluorescein isothi-
ocyanate (FITC) conjugated secondary antibodies (Dako Diagnostics
BV, Denmark). Cells were analyzed on a Zeiss confocal laser scanning
microscope (LSM510).
2.4. Histone H3 pull down assay
Mouse histone H3 cDNA cloned into the pGEX-4T-3 (Amersham

Pharmacia Biotech) bacterial expression vector was a kind gift from
Dr. Y. Shinkai (Department of Cell Biology, Kyoto University,
Japan). The isolation and purification of the fusion protein was per-
formed as described previously [21]. Recombinant proteins were
expressed in Escherichia coli and purified using glutathione beads.
The concentration was quantified by Coomassie Brilliant Blue R-250
staining. Equal concentrations of the GST-H3 recombinant protein
were incubated with cell extracts from uE cells transfected with
Myc-SUV39H1 with or without HA-Evi1. The complexes were incu-
bated overnight at 4 �C, washed with ice-cold lysis buffer and separated
on an 8% SDS–PAGE gel. Detection with antibodies was performed as
described above.
2.5. Luciferase reporter assays
The luciferase reporter assays were performed as described previ-

ously [26]. In short, uE cells were grown in 24-well plates at a density
of 1 · 105 cells per well and transfected with 300 ng 4xGAL-TK-Luc,
100 ng pcDNA3-DBD-Evi1, 300 ng pRSVLacZ and various concen-
trations of pCMV-SUV39H1. The total amount of plasmid DNA
was normalized to 1 lg using empty pCMV expression vector.
++++ +- - --FLAG-Evi1
M

yc
-S

UV39
H1

M
yc

-Δ
 SET

M
yc

-Δ
 Chr

om
o

M
yc

-C
hr

om
o c

or
e

IP: α-Myc

WB: α-FLAG

WB: α-FLAG

WB:α -Myc

Input

aa

aa

aa

GST

α-HA

α-Myc

α-HA

α-Myc

Myc-SUV39H1
HA-Evi1+
GST+

n

-

h Evi1 and this complex binds the H3 N-terminus. (A) Schematic
and its various mutants were transfected with full length FLAG-Evi1.

were detected by WB analysis using an anti-Myc antibody. Ten percent
ing GST-H3 (left panel) or GST alone (right panel) from cell extracts
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3. Results and discussion

3.1. Evi1 interacts with SUV39H1 via its N-terminal zinc finger

domain

The Evi1 protein has been shown to physically and function-

ally interact with different classes of nuclear proteins involved

in transcriptional control [11–13]. To establish whether Evi1

is able to interact with SUV39H1, uE cells were transiently

transfected with Myc-SUV39H1 and HA-Evi1. SUV39H1

and Evi1 complexes were immunoprecipitated using anti-Myc

or anti-HA antibodies. Analysis of these complexes on Western

blots revealed the presence of Myc-SUV39H1 in HA-Evi1

immunoprecipitates. Likewise, HA-Evi1 could be detected in

Myc-SUV39H1 immunoprecipitates (Fig. 1A). The interaction

is specific, as only very low background levels of HA-Evi1 or

Myc-SUV39H1 were observed in single transfected cells using

anti-Myc or anti-HA antibodies, respectively. Furthermore,

immunofluorescence analysis and confocal microscopy showed

partial co-localization between Evi1 and SUV39H1 in cells

transiently transfected with both constructs (Fig. 1B). The

results of these experiments illustrate that the two proteins

interact with each other in intact cells.
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To identify the region of Evi1 required for the interaction

with SUV39H1 we constructed a panel of FLAG-Evi1 mutants

(Fig. 1C). Full length Myc-SUV39H1 was only able to interact

with FLAG-Evi1 mutants that contained an intact N-terminal

zinc finger domain (FLAG-ZF 1–7) or that only missed zinc

fingers 4–7 (FLAG-Evi1D4–7). This indicates that the region

required for interaction is located within the first zinc finger

domain (Fig. 1D).

Our data thus demonstrate an association between Evi1 and

SUV39H1, a member of the histone methyltransferase family

of genes.
4. The SET domain of SUV39H1 binds Evi1 and the complex

specifically interacts with the histone H3 N-terminus

SUV39H1 is a transcriptional repressor that methylates his-

tone residues, but requires specific DNA binding proteins for

its recruitment to particular promoter regions [27]. To identify

which domain of SUV39H1 is responsible for the interaction

with Evi1, we carried out co-immunoprecipitation experiments

with full length HA-Evi1 and various Myc-SUV39H1 mutants
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(Fig. 2A). SUV39H1 contains several functional domains that

have all been shown to play an important role in the function

of the protein. Our results illustrate that absence of the SET

domain, which is responsible for the methylation of H3-K9,

completely abolishes the interaction with Evi1 (Fig. 2B). In

contrast, co-expression with Myc-SUV39H1-D chromo or

Myc-SUV39H1 constructs, which retain the SET domain, pre-

served the interaction with Evi1.

Since H3-K9 is known to be a specific target of the

SUV39H1 enzyme, we investigated if SUV39H1 and Evi1

can form a complex at the H3 tail using GST-pull down exper-

iments with GST recombinant protein fused to the histone H3

N-terminal tail (amino acids 1–57). uE cells transfected with

HA-Evi1 alone or in combination with Myc-SUV39H1 were

lysed and incubated with equal concentrations of GST-H3

(Fig. 2C). Staining with an anti-HA antibody revealed the

presence of Evi1 in the samples that also contained SUV39H1,

while no HA-Evi1 signal was observed in the control samples

with HA-Evi1 and GST-H3 alone. Collectively, these data

demonstrate that the Evi1–SUV39H1 complex is able to bind

the histone H3 tail in vitro, which may affect the expression

of putative Evi1 target genes.

SUV39H1ΔSET

R
el

at
iv

e
L

uc
if

er
as

e
A

ct
iv

ity

**

p<0.001*

+ + + +- - --
+ - - - - - - -

0.1 0.2 0.3 0.1 0.2 0.3- -

p=0.103

p=0.192

0.2

0.4

0.6

0.8

1

1.2

0

R
el

at
iv

e
L

uc
if

er
as

e
A

ct
iv

ity

+Gal4 DBD-Evi1 (0.1μg) + + +- - --

Gal4 DBD (0.1μg) + - - - - - - -

SUV39H ΔSET

Gal4 DBD-Evi1 (0.1μg)

Gal4 DBD (0.1μg)

SUV39H1

0.1 0.2 0.3 0.1 0.2 0.3- -

1.4

0.2

0.4

0.6

0.8

1

1.2

0

1.4

Fig. 4. SUV39H1 enhances the transcriptional repression activity of
Evi1. (A) Schematic representation of the constructs used for the
luciferase assay: Gal4 DNA binding domain (Gal4-DBD), Evi1 fused
to the Gal4 DNA binding domain (Gal4-DBD-Evi1), Luciferase
reporter plasmid with four Gal4 binding sites upstream of the
thymidine kinase promoter (4xGal4AD-TK-Luc). (B) Cells were co-
transfected with 4xGal4AD-TK-Luc, Gal4-DBD-Evi1 and different
concentrations of the SUV39H1 expression plasmid; concentrations
shown are in micrograms of DNA. All luciferase assays were
performed in triplicates in two independent experiments. (C) Lucifer-
ase experiment using SUV39H1DSET instead of SUV39H1. The
experimental set-up was as described above.
5. The Evi1–SUV39H1 complex displays methyltransferase

activity, however Evi1 does not interfere with SUV39H1

activity

In accordance with the ‘‘histone code’’, modifications of the

histone H3 N-terminus influence the chromatin state, result-

ing in either silenced heterochromatin, due to specific lysine

methylation, or active euchromatin, due to acetylation.

SUV39H1 possesses histone methyltransferase activity specific

for H3-K9 [19]. To investigate whether the Evi1–SUV39H1

complex retains this activity, we transfected uE cells with

FLAG-Evi1, Myc-SUV39H1 or with both constructs. Immu-

noprecipitation of SUV39H1 from single transfected cells

clearly showed methylation of histone H3 as expected (Fig.

3A, lane 1), while immunoprecipitated Evi1 alone did not

show any activity (Fig. 3A, lane 2). Notably, Evi1 immuno-

precipitated from cells transfected with both constructs

showed a clear methylation signal, indicating that the Evi1–

SUV39H1 complex possesses methyltransferase activity (Fig.

3A, lane 3).

The in vitro binding analyses (Fig. 2) suggest that the inter-

action between Evi1 and SUV39H1 requires a specific region

within the SET domain of SUV39H1. As this domain is also

required for the enzymatic activity of SUV39H1 [27], we asked

the question if the interaction between Evi1 and SUV39H1

might influence its histone methyltransferase activity. uE cells

were transfected with Myc-SUV39H1 or FLAG-Evi1 and the

proteins were subsequently immunoprecipitated with anti-

Myc or anti-FLAG antibodies (Fig. 3B, upper panel). Purified

immunoprecipitates were combined and the methyltransferase

activity of the complexes was analyzed in HMTase assays (Fig.

3B; lower panel). The results demonstrate that the activity of

Myc-SUV39H1 is unchanged in the presence of the FLAG-

Evi1 protein (Fig. 3B, lower panel lane 2) as compared to a

sample without FLAG-Evi1 (Fig. 3B, lower panel lane 3).

Therefore, the interaction between Evi1 and SUV39H1,

although it occurs through the SET domain, appears not to

influence the histone methyltransferase activity of SUV39H1.
6. SUV39H1 binding enhances transcriptional repression by

Evi1

To determine if the interaction between SUV39H1 and Evi1

may directly influence the transcriptional repression by Evi1,

we performed a luciferase reporter assay. We used the Gal4-

DBD and Gal4-AD-Luc system, which is commonly used to

measure transcriptional activity of interacting proteins

[28,29]. A GAL4-DBD-Evi1 construct in combination with a

Myc-SUV39H1 plasmid and the luciferase reporter gene

(GAL4-AD-Luc) were transiently transfected into uE cells

(Fig. 4A). Expression of low concentrations of Evi1 did not

significantly repress luciferase expression (Fig. 4B). However,

cells transfected with GAL4-DBD-Evi1 plus increasing con-

centrations of Myc-SUV39H1 showed significant repression
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of luciferase activity using T-test analysis (Fig. 4B, P = 0.001).

In contrast, we did not observe significant changes in the

repression of the luciferase activity in an experiment in which

the SET domain of SUV39H1 was deleted (Fig. 4C). In sum-

mary, SUV39H1, through its SET domain, cooperates with

Evi1 in vivo and enhances the transcriptional repression activ-

ity of Evi1 in a dose dependent manner.
7. Evi1 interacts with selected SET domain containing proteins

SET domains are found in many proteins and consist of a

130 amino acid motif first identified in members of the Poly-

comb group (PcG) and Trithorax group (TrG) of genes [20].

To date, several mammalian SET domain proteins have been

identified and shown to associate directly or indirectly with

chromatin [15,29]. We performed immunoprecipitation assays

with two other known methyltransferase proteins, as the ami-

no acid alignment of the SET domains showed high conserva-

tion between SUV39H1, G9a and SET9 (Fig. 5A).

HA-Evi1 was co-transfected with Myc-SET9, FLAG-G9a

or Myc-SUV39H1. Complexes were immunoprecipitated with

anti-FLAG/anti-Myc antibodies and analyzed for the presence

of Evi1. The experiment in Fig. 5B demonstrates that FLAG-G9a

(lane 2) and SUV39H1 (lane 3) each form a complex with Evi1,

whereas Myc-SET9 did not show any interaction with HA-

Evi1 (lane 1). No HA-Evi1 was detected in immunoprecipita-

tion experiments in the absence of anti-FLAG/anti-Myc

antibody (beads only; lane 4). Similarly, when anti-HA was

used for the immunoprecipitation experiments, only G9a and

SUV39H1 could be detected by anti-FLAG Western blot anal-

ysis (data not shown).
To confirm that the enzymatic activity of G9a could be spe-

cifically precipitated in a complex with Evi1, we performed an

HMTase assay on H3-histones using HA-Evi1/FLAG-G9a

transfected cells. H3 peptide methylation was demonstrated

with immunoprecipitated FLAG-G9a methyltransferase (Fig.

5C, lane 3), whereas this activity was not detectable when

the same lysate was exposed to beads without anti-FLAG anti-

body (Fig. 5C, lane 5). Using an anti-HA antibody, we immu-

noprecipitated HA-Evi1 with G9a and observed a clear

methylation of purified H3 (Fig. 5C, lane 1). Autoradiography

revealed no signal in the precipitates obtained in the absence of

either anti-HA or anti-FLAG antibodies (Fig. 5C, lanes 4 and

5) or when no G9a (lane 2) or Evi1 (lane 4) were introduced

into cells.

Taken together, the results presented in this paper illustrate

that Evi1 is able to form a complex with two methyltransfer-

ases, SUV39H1 and G9a, which may affect transcriptional

repression of putative Evi1 target genes.
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