1,081 research outputs found
The soil conservation service : its basis of co-operation with landowners
The Soil Conservation Act of 1945 set up within the Department of Agriculture a Soil Conservation Service under the control of a Commissioner of Soil Conservation.
The Service aims to promote types of land use which will conserve the soil and prevent or overcome soil erosion. It also aims to educate landholders and the public generally in the aims and practice of soil conservation.
This article relates mainly to farm land activities, and in particular the co-operation of the Service with individual primary producer landholders for the prevention and control of erosion on their land
Doubly periodic textile patterns
Knitted and woven textile structures are examples of doubly periodic
structures in a thickened plane made out of intertwining strands of yarn.
Factoring out the group of translation symmetries of such a structure gives
rise to a link diagram in a thickened torus. Such a diagram on a standard torus
is converted into a classical link by including two auxiliary components which
form the cores of the complementary solid tori. The resulting link, called a
kernel for the structure, is determined by a choice of generators u and v for
the group of symmetries.
A normalised form of the multi-variable Alexander polynomial of a kernel is
used to provide polynomial invariants of the original structure which are
essentially independent of the choice of generators. It gives immediate
information about the existence of closed curves and other topological features
in the original textile structure. Because of its natural algebraic properties
under coverings we can recover the polynomial for kernels based on a proper
subgroup from the polynomial derived from the full symmetry group of the
structure. This enables two structures to be compared at similar scales, even
when one has a much smaller minimal repeating cell than the other.
Examples of simple traditional structures are given, and their Alexander data
polynomials are presented to illustrate the techniques and results.Comment: 27 pages, 22 figure
Rapid assembly of highly-functionalised difluorinated cyclooctenones via ring-closing metathesis
Building block methodology from trifluoroethanol and ringclosing metathesis using a Fürstner modification of Grubbs’ conditions allows the rapid synthesis of novel difluorinated cyclooctenones
The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications
The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases
Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans
AbstractNociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior–lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate
Impaired perception of facial motion in autism spectrum disorder
Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported
Initial low/hard state, multiple jet ejections and X-ray/radio correlations during the outburst of XTE J1859+226
We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at
radio and X-ray wavelengths. The event was characterised by strong variability
in the disc, corona and jet - in particular, a number of radio flares
(ejections) took place and seemed well-correlated with hard X-ray events.
Apparently unusual for the `canonical soft' X-ray transient, there was an
initial period of low/hard state behaviour during the rise from quiescence but
prior to the peak of the main outburst - we show that not only could this
initial low/hard state be an ubiquitous feature of soft X-ray transient
outbursts but that it could also be extremely important in our study of
outburst mechanisms.Comment: 12 pages, Accepted for publication in MNRA
Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning
We study vortex states and dynamics in 2D superconductors with periodic
pinning at fractional sub-matching fields using numerical simulations. For
square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4
filling fractions while only partially ordered states form at other filling
fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments.
For triangular pinning arrays we observe matching effects at filling fractions
of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular
pinning arrays we also find that, for certian sub-matching fillings, vortex
configurations depend on pinning strength. For weak pinning, ordering in which
a portion of the vortices are positioned between pinning sites can occur.
Depinning of the vortices at the matching fields, where the vortices are
ordered, is elastic while at the incommensurate fields the motion is plastic.
At the incommensurate fields, as the applied driving force is increased, there
can be a transition to elastic flow where the vortices move along the pinning
sites in 1D channels and a reordering transition to a triangular or distorted
triangular lattice. We also discuss the current-voltage curves and how they
relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure
Recommended from our members
Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males
Purpose:
Epidemiological evidence suggests that chronic consumption of fruit-based flavonoids is associated with cognitive benefits; however, the acute effects of flavonoid-rich (FR) drinks on cognitive function in the immediate postprandial period require examination. The objective was to investigate whether consumption of FR orange juice is associated with acute cognitive benefits over 6 h in healthy middle-aged adults.
Methods:
Males aged 30–65 consumed a 240-ml FR orange juice (272 mg) and a calorie-matched placebo in a randomized, double-blind, counterbalanced order on 2 days separated by a 2-week washout. Cognitive function and subjective mood were assessed at baseline (prior to drink consumption) and 2 and 6 h post consumption. The cognitive battery included eight individual cognitive tests. A standardized breakfast was consumed prior to the baseline measures, and a standardized lunch was consumed 3 h post-drink consumption.
Results:
Change from baseline analysis revealed that performance on tests of executive function and psychomotor speed was significantly better following the FR drink compared to the placebo. The effects of objective cognitive function were supported by significant benefits for subjective alertness following the FR drink relative to the placebo.
Conclusions:
These data demonstrate that consumption of FR orange juice can acutely enhance objective and subjective cognition over the course of 6 h in healthy middle-aged adults
- …