231 research outputs found
Daily Eastern News: November 10, 1975
https://thekeep.eiu.edu/den_1975_nov/1005/thumbnail.jp
An Improved Neutron Electric Dipole Moment Experiment
A new measurement of the neutron EDM, using Ramsey's method of separated
oscillatory fields, is in preparation at the new high intensity source of
ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland
(PSI). The existence of a non-zero nEDM would violate both parity and time
reversal symmetry and, given the CPT theorem, might lead to a discovery of new
CP violating mechanisms. Already the current upper limit for the nEDM
(|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model.
The new experiment aims at a two orders of magnitude reduction of the
experimental uncertainty, to be achieved mainly by (1) the higher UCN flux
provided by the new PSI source, (2) better magnetic field control with improved
magnetometry and (3) a double chamber configuration with opposite electric
field directions.
The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL
group's apparatus (which has produced the current best result) moved from
Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further
step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200
Improving the performance of aeroacoustic measurements beneath a turbulent boundary layer in a wake flow
Experimental measurement and subsequent numerical prediction of the excitation of at plates or car
windows beneath a turbulent boundary layer have become important for the development of novel cars and
airplanes. A wavenumber spectrum can be used to define the load on a plat caused by the pressure fluctuations on the surface. Wavenumber spectra from measurements are used to validate the numerical predictions of the acoustic and hydrodynamic portions of the pressure fluctuations. When measuring wavenumber spectra, the design of the experiment can have a large in fluence on the outcome. In this paper, the effects of both array design and the application of deconvolution algorithms on the experimental determination of the wavenumber-frequency spectrum are evaluated
An Improved Search for the Neutron Electric Dipole Moment
A permanent electric dipole moment of fundamental spin-1/2 particles violates
both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity
(CP) symmetry since there is no sign of CPT-violation. The search for a neutron
electric dipole moment (nEDM) probes CP violation within and beyond the Stan-
dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an
improved, upgraded version of the apparatus which provided the current best
experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL
collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next
two years we aim to improve the sensitivity of the apparatus to sigma(dn) =
2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in
case for a null result. In parallel the collaboration works on the design of a
new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.Comment: APS Division for particles and fields, Conference Proceedings, Two
figure
Chemotactic response and adaptation dynamics in Escherichia coli
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia
coli is integral for detecting chemicals over a wide range of background
concentrations, ultimately allowing cells to swim towards sources of attractant
and away from repellents. Its biochemical mechanism based on methylation and
demethylation of chemoreceptors has long been known. Despite the importance of
adaptation for cell memory and behavior, the dynamics of adaptation are
difficult to reconcile with current models of precise adaptation. Here, we
follow time courses of signaling in response to concentration step changes of
attractant using in vivo fluorescence resonance energy transfer measurements.
Specifically, we use a condensed representation of adaptation time courses for
efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based
on the attractant flow in the experiment, signaling by cooperative receptor
complexes, and multiple layers of feedback regulation for adaptation. We
experimentally confirm the predicted effects of changing the enzyme-expression
level and bypassing the negative feedback for demethylation. Our data analysis
suggests significant imprecision in adaptation for large additions.
Furthermore, our model predicts highly regulated, ultrafast adaptation in
response to removal of attractant, which may be useful for fast reorientation
of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript
(19 pages, 5 figures) and supplementary information; added additional
clarification on alternative adaptation models in supplementary informatio
Sensory Measurements: Coordination and Standardization
Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders
Cubic boron nitride: a new prospective material for ultracold neutron application
For the first time, the neutron optical wall-potential of natural cubic boron
nitride (cBN) was measured at the ultracold neutron (UCN) source of the
research reactor TRIGA Mainz using the time-of-flight method (TOF). The samples
investigated had a wall-potential of (305 +/- 15) neV. This value is in good
agreement with the result extracted from neutron reflectometry data and
theoretical expectations. Because of its high critical velocity for UCN and its
good dielectric characteristics, cubic boron nitride coatings (isotopically
enriched) will be useful for a number of applications in UCN experiments
Gravitational depolarization of ultracold neutrons: comparison with data
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment
were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an
unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}
Expression of Odorant Receptor Family, Type 2 OR in the Aquatic Olfactory Cavity of Amphibian Frog Xenopus tropicalis
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions
- …