41 research outputs found

    A Combined Score of Circulating miRNAs Allows Outcome Prediction in Critically Ill Patients

    Get PDF
    Background and aims: Identification of patients with increased risk of mortality represents an important prerequisite for an adapted adequate and individualized treatment of critically ill patients. Circulating micro-RNA (miRNA) levels have been suggested as potential biomarkers at the intensive care unit (ICU), but none of the investigated miRNAs displayed a sufficient sensitivity or specificity to be routinely employed as a single marker in clinical practice. Methods and results: We recently described alterations in serum levels of 7 miRNAs (miR-122, miR-133a, miR-143, miR-150, miR-155, miR-192, and miR-223) in critically ill patients at a medical ICU. In this study, we re-analyzed these previously published data and performed a combined analysis of these markers to unravel their potential as a prognostic scoring system in the context of critical illness. Based on the Youden’s index method, cut-off values were systematically defined for dysregulated miRNAs, and a “miRNA survival score” was calculated. Patients with high scores displayed a dramatically impaired prognosis compared to patients with low values. Additionally, the predictive power of our score could be further increased when the patient’s age was additionally incorporated into this score. Conclusions: We describe the first miRNA-based biomarker score for prediction of medical patients’ outcome during and after ICU treatment. Adding the patients’ age into this score was associated with a further increase in its predictive power. Further studies are needed to validate the clinical utility of this score in risk-stratifying critically ill patients

    Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer.

    Get PDF
    BackgroundUnderstanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer.MethodMitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) -/- or wild type mice. Colon cancer cell lines (+/- SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays.ResultsIn primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling.ConclusionAlthough activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors

    Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease

    Get PDF
    Background Crohn's disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical. Results We aimed to test if somatic mutations play a role in CD etiology by sequencing the genomes and exomes of directly affected tissue from the bowel and blood samples of one and the blood-derived exomes of two further monozygotic discordant twin pairs. Our goal was the identification of mutations present only in the affected twins, pointing to novel candidates for CD susceptibility loci. We present a thorough genetic characterization of the sequenced individuals but detected no consistent differences within the twin pairs. An estimate of the CD susceptibility based on known CD loci however hinted at a higher mutational load in all three twin pairs compared to 1,920 healthy individuals. Conclusion Somatic mosaicism does not seem to play a role in the discordance of monozygotic CD twins. Our study constitutes the first to perform whole genome sequencing for CD twins and therefore provides a valuable reference dataset for future studies. We present an example framework for mosaicism detection and point to the challenges in these types of analyses

    Low extracellular vesicle concentrations predict survival in patients with heart failure

    Get PDF
    BackgroundHeart disease is of worldwide importance due to high morbidity and mortality. Extracellular vesicle (EV) concentration and size represent novel diagnostic and prognostic biomarkers, e.g. in patients with liver cancer, but data on their prognostic relevance in heart disease are lacking. Here, we investigated the role of EV concentration, size and zeta potential in patients with heart disease.MethodsVesicle size distribution, concentration and zeta potential were measured by nanoparticle tracking analysis (NTA) in 28 intensive care unit (ICU) and 20 standard care (SC) patients and 20 healthy controls.ResultsPatients with any disease had a lower zeta potential compared to the healthy controls. Vesicle size (X50) was significantly higher in ICU patients (245 nm) with heart disease as compared to those patients with heart disease receiving standard care (195 nm), or healthy controls (215 nm) (p = 0.001). Notably, EV concentration was lower in ICU patients with heart disease (4.68 × 1010 particles/ml) compared to SC patients with heart disease (7,62 × 1010 particles/ml) and healthy controls (1.50 × 1011 particles/ml) (p = 0.002). Extracellular vesicle concentration is prognostic for overall survival in patients with heart disease. Overall survival is significantly reduced when the vesicle concentration is below 5.55 × 1010 particles/ml. Median overall survival was only 140 days in patients with vesicle concentrations below 5.55 × 1010 particles/ml compared to 211 days in patients with vesicle concentrations above 5.55 × 1010 particles/ml (p = 0.032).SummaryConcentration of EVs is a novel prognostic marker in ICU and SC patients with heart disease
    corecore