483 research outputs found

    Patients as researchers - innovative experiences in UK National Health Service research

    Get PDF
    Consumer involvement is an established priority in UK health and social care service development and research. To date, little has been published describing the process of consumer involvement and assessing ‘consumers’ contributions to research. This paper provides a practical account of the effective incorporation of consumers into a research team, and outlines the extent to which they can enhance the research cycle; from project development and conduct, through data analysis and interpretation, to dissemination. Salient points are illustrated using the example of their collaboration in a research project. Of particular note were consumers’ contributions to the development of an ethically enhanced, more robust project design, and enriched data interpretation, which may not have resulted had consumers not been an integral part of the research team

    Differential splicing using whole-transcript microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target) platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events.</p> <p>Results</p> <p>We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis). RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of <it>differential </it>splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms.</p> <p>Conclusion</p> <p>We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data.</p> <p>Software implementing our methods is freely available as an <monospace>R</monospace> package.</p

    A comparison between Asian and Australasia backpackers using cultural consensus analysis

    Get PDF
    This study tests the differences in the shared understanding of the backpacker cultural domain between two groups: backpackers from Australasia and backpackers from Asian countries. A total of 256 backpackers responded to a questionnaire administered in Kuala Lumpur, Bangkok and Krabi Province (Thailand). Cultural consensus analysis (CCA) guided the data analysis, to identify the shared values and the differences in the backpacker culture of the two groups. The findings revealed that while the two groups share some of the backpacker cultural values, some other values are distinctively different from one another. The study provides the first empirical evidence of the differences in backpacking culture between the two groups using CCA. Based on the study findings, we propose some marketing and managerial implications

    Young hands, old books: : Drawings by children in a fourteenth-century manuscript, LJS MS. 361

    Get PDF
    This article scrutinises three marginal drawings in LJS 361, Kislak Center for Special Collections, Rare Books and Manuscripts, University of Pennsylvania Libraries. It first considers the provenance of the manuscript, questioning how it got into the hands of children. Then, it combines developmental psychology with close examination of the material evidence to develop a list of criteria to attribute the drawings to children. There is consideration of the features that help us estimate the age of the artists, and which indicate that one drawing was a collaborative effort between two children. A potential relationship is identified between the doodles and the subject matter of the text, prompting questions about pre-modern child education and literacy. Finally, the article considers the implications of this finding in both codicology and social history since these marginal illustrations demonstrate that children were active in the material life of medieval books

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Using Conversation Analysis in the Lab

    Get PDF
    In this introduction to the special issue of Research on Language and Social Interaction on “Experimental and Laboratory Approaches to Conversation Analysis,” I make the case that while naturalistic observation should take precedence over other methods, Conversation Analysis as a field should embrace a methodological pluralism that includes not only quantification but also experimentation and laboratory observation. Before I introduce the contributions to the special issue, I discuss the prohibition against such meth- ods in the field, situate naturalistic and laboratory research on a methodologi- cal continuum, and develop a series of arguments in favor of experimental and laboratory studies of interaction

    Tissue specific characteristics of cells isolated from human and rat tendons and ligaments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression.</p> <p>Methods</p> <p>Cells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry.</p> <p>Results</p> <p>In the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and rats whereas D7fib was expressed at lower levels by PT cells in humans.</p> <p>Conclusion</p> <p>These data show that tendon & ligament cells from different sources possess intrinsic differences in terms of their growth, dexamethasone responsiveness and cell surface marker expression. This suggests that for tissue engineering purposes the cell source must be carefully considered to maximise their efficacy.</p

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
    corecore