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Multiple Trait Covariance 
Association Test Identifies Gene 
Ontology Categories Associated 
with Chill Coma Recovery Time in 
Drosophila melanogaster
Izel Fourie Sørensen1, Stefan M. Edwards   1,2, Palle Duun Rohde   1,3,4 & Peter Sørensen1

The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for prediction 
of complex traits as well as estimation of population genetic parameters. Improved inference and 
prediction accuracy of GBLUP may be achieved by identifying genomic regions enriched for causal 
genetic variants. We aimed at searching for patterns in GBLUP-derived single-marker statistics, by 
including them in genetic marker set tests, that could reveal associations between a set of genetic 
markers (genomic feature) and a complex trait. GBLUP-derived set tests proved to be powerful for 
detecting genomic features, here defined by gene ontology (GO) terms, enriched for causal variants 
affecting a quantitative trait in a population with low degree of relatedness. Different set test 
approaches were compared using simulated data illustrating the impact of trait- and genomic feature-
specific factors on detection power. We extended the most powerful single trait set test, covariance 
association test (CVAT), to a multiple trait setting. The multiple trait CVAT (MT-CVAT) identified 
functionally relevant GO categories associated with the quantitative trait, chill coma recovery time, in 
the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel.

The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for estimation of population 
genetic parameters (e.g. heritability) as well as prediction of complex traits1, 2. GBLUP is a “black box” modelling 
approach fitting fixed and random effects simultaneous, utilizing the genetic relationship between individuals 
based on the correlation structure among genetic markers. Typically, GBLUP ignores prior biological informa-
tion. Although models ignoring the underlying biology can serve as useful tools for prediction of genetic values 
or phenotypes, models utilizing known biological mechanisms provide a functional tool for testing our under-
standing of those mechanisms, and potentially improve inference and prediction accuracy.

It appears that markers associated with trait variation are not uniformly distributed throughout the genome, 
but enriched in genes that are connected in biological pathways3–7. Such knowledge could be utilized to build 
models that quantify the joint effect of a set of markers located in a genomic feature, i.e. genomic regions defined 
by e.g. genes, biological pathways, sequence annotation or other external evidence8–10. Improved inference 
and prediction accuray of GBLUP may be achieved by identifying genomic regions enriched for causal genetic 
variants.

The GBLUP approach can be modified in several ways to utilize genomic features as prior information. One 
approach is to extend the traditional GBLUP model to include additional genomic effects based on genetic mark-
ers located within a genomic feature11–16. Applying the genomic feature best linear unbiased prediction (GFBLUP) 
model to the Drosophila Genetic Reference Panel (DGRP)17, 18, we have previously demonstrated, that GFBLUP 
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models can increase prediction accuracy for quantitative traits15. These results were further supported by simu-
lation studies illustrating the impact of trait- and genomic feature-specific factors on prediction accuracy15. The 
GFBLUP model approach is, however, computationally intensive. An alternative approach is to search for patterns 
in GBLUP-derived single-marker statistics that can reveal associations between a genomic feature and a complex 
trait. We have previously evaluated a number of GBLUP-derived set tests on a binary outcome (i.e. disease trait) 
using high-density single nucleotide polymorphisms (SNPs) from genotyping arrays19. These GBLUP-derived set 
tests proved to be computationally fast and powerful compared to existing set test approaches19.

Here, we evaluated GBLUP-derived set tests on a quantitative trait as opposed to the binary outcome in the 
study of Rohde et al.19, and applied it to whole genome sequence data contrary to the genotypes derived from 
SNP arrays as previously shown19. Whole genome sequence data greatly exacerbate the true genomic signal to 
non-causal marker noise problem and may influence the power of set tests. Extending GBLUP-derived set tests 
could potentially increase detection power and contribute to a better understanding of complex traits’ underlying 
genetic architecture. First, multiple feature sets can be fitted in the model (e.g. a GFBLUP model), such as group-
ing markers based on their minor allele frequency19, 20 or prior QTL information16. By fitting multiple feature sets, 
genetic effects are estimated based on a mixture of normal distributions enabling further differential shrinkage of 
single marker effects across feature sets. Second, a multiple trait GBLUP model21, 22 can be fitted. This can poten-
tially increase the accuracy of the total genomic value21, 22 and thereby the single marker effect, which in turn will 
lead to more accurate test statistics for genetic marker sets, thereby increasing detection power of the set test.

The aim of the study was to evaluate and compare genetic marker set tests derived from GBLUP on a quanti-
tative trait using whole genome sequence data. Different set tests were evaluated and compared using simulated 
data generated from DGRP genotypes, focussing on factors specific to genomic features (e.g. the number, location 
and effect sizes of the true causal variants in the feature) that influence the power of set tests to detect genomic 
features affecting the trait phenotype. Furthermore, we investigated whether the results obtained using the 
GBLUP-derived set tests can be used to develop more accurate GFBLUP prediction models. Finally, we derived a 
multiple trait GBLUP set test (MT-CVAT) and used it to identify genomic features associated with a quantitative 
trait phenotype, chill coma recovery time (CCRT), in the unrelated, sequenced inbred lines of the DGRP.

Methods
In the following a range of different GBLUP-derived set test approaches will be described in detail. The general 
procedure is to obtain single marker effects based on a standard GBLUP model, from which it is possible to 
compute and evaluate a test statistic for a set of genetic markers, measuring the degree of association between 
the genomic feature and the complex trait phenotype. This includes the statistical model and the underlying 
assumptions, test statistics for the set of genetic markers, and statistical procedures for assessing the statistical 
significance of the observed test statistic under a specific null hypothesis.

Set test approach.  The GBLUP-derived set test approach is based on two steps: First a standard linear mixed 
model is fitted, and then a test statistic for the marker set is computed.

Linear mixed model.  GBLUP is based on a linear mixed model including only one random genomic effect:

= + +y Xb Zg e, (1)

where y is the vector of phenotypic observations, X and Z are design matrices for the fixed and random effects, b 
is a vector of fixed effects, g is the vector of genomic values captured by all genetic markers, and e is the vector of 
residuals. The random genomic values and the residuals were assumed to be independent normally distributed 
values described as follows: σ~g 0 GN( , )g

2  and σ~e 0 IN( , )e
2 . Thus, we assume that the observed phenotypes 

~y Xb VN( , ) where = ′σ + σV ZGZ Ig
2

e
2.

The additive genomic relationship matrix G is constructed23 using all genetic markers as follows: G = WW′/m, 
where W is the centered and scaled genotype matrix, and m is the total number of markers. Each column vector 
of W was calculated as follows: =

−

−
wi

a 2p

2p (1 p )
i i

i i

, where pi is the minor allele frequency of the ith genetic marker 

and ai is the ith column vector of the allele count matrix, A which contains the genotypes coded as 0, 1 or 2 count-
ing the number of the minor allele.

Single marker statistics.  Single marker effects ŝ  can be computed from the predicted total genomic value 
= σ −−^ ^ ^g G V y Xb( )g

2 1  obtained from the GBLUP model as:

= ′ ′ −^ ^s W WW g( ) , (2)1

and the (co)variance of the single marker effects can be computed as:

= ′ ′ ′ ′.− −
 ^ ^s W WW g WW WVar( ) ( ) Var( )( ) (3)1 1

In this expression, the (co)variance of the predicted genomic value = σ + ^ ^g G CVar( ) g
2 gg can be derived from 

the inverse of the coefficient matrix of the mixed model equations24, 25 for GBLUP where Cgg is the part of this 
equation system that corresponds to the total genomic value.

Assessing association of individual markers is based on a single marker test statistic such as the t-statistic and 
a threshold for this statistic.
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j

where ^Var( s )j  is the estimate of variance of the j’th element of ŝ  obtained from the j’th element of the diagonal of 
the (co)variance matrix of the single marker effects. Under the null hypothesis that =ŝ 0j , it is assumed that ^t sj

 
follows a t distribution with dfe residual degrees of freedom. The residual degrees of freedom dfe is computed as 
tr(I − H), which is equivalent to n − tr(H) where n is the total number of phenotypic observations and tr(H) 
represents the degrees of freedom occupied by the penalised fit (e.g. the linear mixed model fit). The hat matrix H 
transforms y into ŷ.

Set tests for genomic features.  The set test statistics for the feature set can be computed in a number of 
ways. Below is described four different approaches all derived from the GBLUP model.

The first set test statistic is the covariance association test (CVAT)19, which considers the covariance between 
the total genomic effect for all markers = ∑ =^ ^g w( s )i 1

m
i i  and the genomic effect for the feature = ∑ =^ ^g w( s )f i 1

m
i if :

= ′ = ′ + ′ = ′ + ′ .^ ^ ^ ^ ^ ^ ^ ^ ^g g g g g g g g gT ( ) (5)CVAT f f r f f f r f

In this expression = ∑ =^ ^g w sr i 1
m

i ir  is the genomic effect for the remaining set of markers. The number of mark-
ers in feature and in the remaining set of markers is given by mf and mr respectively.

The distribution of this set test statistic under the competitive null hypothesis (genomic feature comprises 
randomly sampled markers) is unknown and an empirical distribution is required. An empirical distribution for 
the competitive null hypothesis can be obtained by sampling mf columns in W at random.

The second set test statistic considered is a commonly used score based approach. It is derived from the first 
derivative of the likelihood as is Rao’s score test26. A key difference compared to Rao’s score test is that only the 
quadratic term in the first derivative form the basis of this test statistic27–29 from an argument that this is the only 
part that involves the data30. The score based approach used here is thus equivalent to the sequence kernel associ-
ation test (SKAT)28. The score statistic can therefore be written as:

= − ′ −− −y Xb V G V y XbT 1
2

( ) ( ), (6)Score
1

f
1

where the fixed effects b and the phenotypic covariance matrix V are estimated under a null model. The purpose 
of the null model is to adjust for environmental non-genetic factors, and for genetic factors not part of the 
genomic feature, including population structure. Several alternative null models can be used in the score test 
approach. If the GBLUP model is used as the null model the genomic effects can either be defined as 

σ~g GN(0, )g
2  or alternatively σ~g GN(0, )r r

2 . In the first case the genomic relationship matrix is computed 
using all genetic markers and therefore the null model needs only to be fitted once. In the latter case, it is com-
puted using only the genetic markers not included in the genomic feature which requires us to fit a different null 
model for each genomic feature. The set test statistic for the score approach can be re-written as:

= ′ ′ = ′
′

′^ ^ ^ ^e ZG Z e e Z WW Z eT 1
2

1
2 m

,
(7)Score f

f f

f

where = −
−
^ ^e V y Xb( )

1
. The empirical distribution of the score set test statistic under the competitive null 

hypothesis is obtained by randomly sampling mf columns in W. It is also possible to derive an approximate distri-
bution using the Satterthwaite’s procedure of moment matching to approximate the null distribution of TScore by a 
Gamma distribution29. The two parameters in the approximate distribution are calculated by matching the first 
and second moments (mean and variance) with those of the score set test statistic.

The third test statistic is based on the sum of the test statistic for all genetic markers belonging to the same 
genomic feature such as:

∑=
=

T t ,
(8)sum

i 1

m

i
2f

where ti represents the i’th single variant test statistic, e.g. marker effects (ŝ ) or t-statistics. The distribution of this 
test statistic under the null hypothesis (associated markers are picked at random from the total number of tested 
genetic markers) is unknown and an empirical distribution is required. In this study both ŝ  and the t-statistic in 
equation 4 were used to compute Tsum.

The fourth set test statistic is based on counting the number of genetic markers in the feature that are associ-
ated with the trait phenotype and is computed as:

∑= >
=

T I(t t ),
(9)count

i 1

m

i 0

f

where mf is the number of markers in the feature, ti is the i’th single marker test statistic (e.g. t-statistic), t0 is an 
arbitrary chosen threshold for the single marker test statistics, and I is an indicator function that takes the value 
one if the argument ( >abs(t ) ti 0) is satisfied. Under the null hypothesis (i.e. individually associated markers are 
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distributed randomly, thus, the number of associated markers within a feature is indifferent compared to a ran-
dom set of markers) it is assumed that ~T Hyper(m, m , m )count a f  is a realization from a hypergeometric distri-
bution with parameters m (total number of genetic marker tested), ma (total number of associated genetic 
markers amongst all markers) and mf (total number of genetic markers in the feature). Alternatively, the statistical 
significance of the Tcount statistic can be assessed using a χ2 test for independence31 or by obtaining an empirical 
distribution under a specific null hypothesis.

Extensions to GBLUP-derived CVAT.  The CVAT is a flexible set test approach which can be extended in 
a number of ways facilitating further investigation of the underlying genetic architecture of complex traits. E.g. 
it can be decomposed at different levels of a hierarchy of gene sets, genes and markers; it can be derived from a 
model with multiple genetic components; or it can be derived from multiple trait models.

First, the CVAT statistic can be decomposed at different levels of a hierarchical genomic feature classification 
scheme, such as decomposing the covariance between the total genomic value and the genomic value defined by 
a genomic feature at the pathway level (e.g. group of genes) into the contribution from individual genes 

= ∑ =^ ^g g( )f i 1
n

f
genes

i
 to the covariance test statistics and even single markers = ∑ =^ ^g w( s )f j 1

m
j ji

fi  within a gene. The num-
ber of SNPs mfi

 located within genes varies (due to gene size etc.) and therefore partitioned covariance test statis-
tics at the gene level are presented “per SNP”.

Second, the CVAT statistic can be derived from a GFBLUP model with multiple genetic components14–16, 19. 
The total genomic values in the GBLUP model are assumed to be drawn from the same distribution 

σ~g GN(0, )g
2 . It is, however, very likely that the genomic values come from a mixture of distributions, e.g. 

groups of genetic markers having different effects based on their minor allele frequency (MAF)20 or genetic mark-
ers known a priori to have large effects (e.g. discovered in previous GWAS). Such prior information can be used 
by fitting multiple genetic components in the linear mixed model:

∑= + + .
=

y Xb Zg e
(10)i 1

n

i

f

The notation is similar to the GBLUP model presented above except gi is the vector of genetic values captured 
by the i’th genetic marker set. The random genetic effects and residuals were assumed to be independent and 
distributed as σ~g GN(0, )i i g

2
i

, and σ~e IN(0, )e
2  where = ′G W W/mi i i i is the additive genomic relationship 

matrix for the i’th genetic marker set. The single marker effects derived from the GFBLUP model are computed 
as: = ′ ′ −^ ^s W WW g( )i i i i

1
i, thus = ′ … ′^ ^ ^s s s[ ]1 nf

.
Third, the CVAT statistic can be derived from a multiple trait GBLUP model (or GFBLUP model)21, 22. This 

can be important if we have records on correlated traits, for example a high heritability trait (or a trait with many 
observations) correlated with a low heritability trait (or a trait with few observations). In such a situation using a 
multiple trait model is likely to increase the accuray of the predicted total genetic value and single marker effects 
for the low heritability trait which in turn will increase the power of the set test. This becomes highly relevant for 
borrowing information across traits or same trait recorded in different breeds or study populations. The linear 
mixed model for multiple traits (2 traits in this example) can be expressed as:













=










 +

















+ 






.

y
y

X b
X b

Z g
Z g

e
e (11)

1

2

1 1

2 2

1 1

2 2

1

2

The notation is similar to the GBLUP model presented above except that y1 and y2 are vectors of phenotypes 
for trait 1 and 2, respectively. X1 and X2 are design matrices for the fixed effects and b1 and b2 are the vectors of 
these fixed effects. Z1 and Z2 are design matrices for the random effects, g1 and g2 are vectors of total genetic values 
and e1 and e2 are vectors of residuals for trait 1 and 2.

The random genetic effects, =









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

g
g
g

1

2
, and residuals, = 
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


e
e
e

1

2
, were assumed to be independent and distributed 

as 
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. Furthermore, TCVAT can be used to identify features 

associated with the covariance between total genetic values in different traits expressed as:

= ′ = ′ + ′^ ^ ^ ^ ^ ^g g g g g gT , (12)CVAT 1 f f f r f2 1 2 1 2

which consider the covariance between the total genomic effect for all markers = ∑ =^ ^( )g w s1 i 1
m

i 1i
 of trait 1 (or 

trait 2) and the genomic effect for a feature = ∑ =^ ^g w( s )f i 1
m

i 22
f

i
 of trait 2 (or trait 1).

Fitting linear models and estimation of variance components.  Estimates of the variance compo-
nents (i.e. σ σ σ σ σ^ ^ ^ ^ ^, , , andg

2
g
2

g
2

g
2

e
2

1 2 12
) defined in the models described above were obtained using an average infor-

mation restricted maximum likelihood (AI-REML) procedure32, 33 as implemented in the software DMU. In this 
procedure, matrices were not full rank due to centering of the observed genotypes, which necessitated a general-
ized inverse of the genomic relationship matrices.
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Testing for association between a genomic feature and a phenotype.  The test for association was 
based on a competitive null hypothesis, i.e. that the degree of association of the feature set was the same as that of 
a random marker set27, 34.

A null hypothesis is only competitive if the parameters influencing the test statistic are identical to the alterna-
tive hypothesis. Thus, there must be an equal number of markers for the random set and the true set, and the cor-
relation structure among markers (due to linkage disequilibrium) should be retained. The empirical distribution 
of the test statistics was therefore obtained using the circular permutation procedure as described in Cabrera et 
al.35. The genome was considered to be circular, ordered from chromosome 2 L to chromosome X and restarting 
again at chromosome 2 L. Then the complete set of observed test statistics are permuted by rotation with respect 
to their genomic locations, i.e. a random number between 1 and the total number of SNPs is drawn, and the 
observed test statistic for the first SNP in the genome rotates to that of the random number-th SNP and all other 
test statistics rotate to the same degree to the corresponding SNPs. Thus, SNPs retain the same original order 
but, at each permutation, gain new random test statistics. This uncouples any associations between SNPs and the 
genomic feature, while retaining similar patterns of the correlation structure among test statistics. A new set test 
statistic was then computed based on the original position of the genomic features. The permutation was repeated 
10,000 times for each set in the feature class, and empirical p-values were obtained through one-tailed tests of the 
proportion of randomly sampled test statistics larger than that observed.

Implementation.  The GBLUP-derived set test approaches described above were implemented in the R 
package qgg, which is available at http://psoerensen.github.io/qgg/. This includes fitting a series of linear mixed 
models, estimating variance components using methods such as REML, computing the test statistic for the set of 
genetic markers, and testing the statistical significance of the observed test statistic under a specific null hypoth-
esis. Example scripts and data sets are provided for illustrating the GBLUP model derived set test approaches. 
For specific experimental design with replicated phenotypes within line such as DGRP it is more efficient to use 
the AI-REML procedure32, 33 implemented in DMU32. The AI-REML function in the qgg package provides an R 
interface to the DMU which can be downloaded from http://dmu.agrsci.dk/DMU/. The CVAT approach can also 
be derived from the REML procedures implemented in existing software packages commonly used in genomics 
such as GCTA36, LDAK37, DISSECT38 and MTG239.

Simulation study comparing set test approaches.  To compare the different set test approaches 
described above, and to investigate different factors that might influence the power to detect causal sets of SNPs, 
a series of phenotypic simulations were established. The factors varied in the simulations should imitate different 
genetic architectures and included genomic heritability (h2), proportion of genomic variance explained by causal 
SNPs in the genomic feature (hf

2), proportion of non-causal SNPs in the genetic marker set defined by the genomic 
feature (dilution), genome distribution of causal SNPs (causal model, i.e. whether the causal SNPs were distributed 
in the genome randomly or clustered in groups) and the number of phenotypic records for each genotype (Nrep). 
For each data set and replicate we estimated variance components for the GBLUP and GFBLUP models using 
AI-REML and applied the different set tests (not including the extensions to CVAT).

Simulated data.  The simulations were based on the real genotype DGRP data set of 205 lines. Genotypes 
were originally obtained from whole genome sequences using an integrative genotyping procedure18. All simula-
tions were based on segregating biallelic single nucleotide polymorphisms (SNPs) with minor allele frequencies 
≥0.05 and for which the Phred scaled variant quality was greater than 500 and the genotype call rate was ≥0.8, 
resulting in a total of 1,725,755 SNPs.

Causal sets.  In all scenarios, there were 1,000 causal SNPs, which were divided into two subsets. The first subset, 
C1, contained 100 SNPs and was used as the causal SNP set in the genomic feature that explained 10%, 20%, 30%, 
or 50% of the genomic variance. The second subset, C2, contained 900 SNPs and explained the remaining genomic 
variance. To mimic relevant genetic scenarios, the genome distribution of the causal SNPs in the genomic feature 
was simulated using two different causal models: a random and a cluster model. The cluster model simulates the 
situation in which multiple causal SNPs occur in a limited number of genes, whereas in the random model single 
causal SNPs occur in a larger number of genes. The main difference is that the genomic variance is associated with 
a smaller genome region in the cluster model compared to the random model. For the clustered causal model, the 
100 causal SNPs in C1 were chosen from 20 randomly selected genome regions spanning 50 SNPs each, and the 
remaining 900 SNPs in C2 were randomly selected from the complete SNP set (excluding the SNPs in C1). For the 
random causal model, the SNPs in C1 and C2 were randomly selected from the complete SNP set. To investigate 
the effects of non-causal SNPs within the causal sets, we added an increasing number of non-causal SNPs (100, 
200, …, 1,900, 2,000), to the causal set C1, in a process referred to as dilution. To determine the false-positive rate, 
50 non-causal SNP sets of varying sizes (10 sets each containing 0.1 k, 0.5 k, 1 k, 5 k or 10 k SNPs) were sampled, 
none of which were contained in the causal sets of SNPs.

Phenotypes.  Phenotypes were simulated using the following linear model: = + +y Zg Zg e1 2 , where 
σ~g GN(0, )1 1 g1

2 , σ~g GN(0, )2 2 g2
2 , and σ~e IN(0, )e

2 . G1 and G2 are the genomic relationship matrices for causal 
SNPs in C1 and C2, respectively. Z is a design matrix linking DGRP lines to individual phenotypes. The total phe-
notypic variance σ = σ + σ + σP

2
g1
2

g2
2

e
2 was 100 in all scenarios. We simulated data with additive genomic  

heritabilities 



=





σ + σ

σ + σ + σ
h2 g1

2
g2
2

g1
2

g2
2

e
2

 of 0.1, 0.3, or 0.5, to analyse scenarios with low to intermediate heritabilities, 

reflecting those observed in the real data. To analyse scenarios with non-uniform SNP effects, the proportion of 

http://psoerensen.github.io/qgg/
http://dmu.agrsci.dk/DMU/
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additive genomic variance explained by the causal SNPs in C1 





=





σ

σ + σ
hf

2 g1
2

g1
2

g2
2

 was varied across scenarios: 0.1, 0.2, 

0.3, or 0.5. These parameters were investigated for Nrep of 5, 10, and 50. Increasing the number of replicates per 
line decreases the variance of the phenotypic value for each line. Combining these factors yielded a total of 1,440 
individual simulated data sets [3 (Nrep) × 3 (h2) × 4 (hf

2) × 2 (causal model) × 20 (dilution)]. For each possible 
combination of factors 50 independent data sets were obtained.

Assessing the power of set test statistics.  To measure the performance of the different test statistics we 
used the F1 score:

=
⋅
+

F 2 p r
p r

,
(13)1

where = +p TP/(TP FP) is the precision and = +r TP/(TP FN)  is the recall. The F1 score is the harmonic 
mean of precision and recall40. The recall r is the proportion of true positives (TP) that are correctly identified, i.e. 
the ratio between the number of identified causal sets and the number of sets that should have been identified, 
thus, the sum of TP and false negatives (FN). Contrary, the precision p is the proportion of positives that truly are 
positives, i.e. the proportion of true causal sets of all sets identified, thus, the sum of TP and false positives (FP). 
The F1 score can take values between 0 and 1, with maximum performance at the value of 1. The F1 score was 
calculated for each test staticstic under each combination of factors, using a p-value cut-off of 0.05 for a positive 
detection of a genomic feature.

Comparing set test results with the predictive ability of the GFBLUP model.  We investigated 
whether the results obtained using the GBLUP derived set tests can be used to develop more accurate GFBLUP 
prediction models. The GFBLUP model is an extension of the traditional GBLUP model, where an additional 
genomic effect (defined by the genomic feature) is included in the linear mixed model15. The predictive ability of 
the GFBLUP model was assessed using a cross validation procedure15. In the GFBLUP model the total genomic 
value is = +^ ^ ^g f rtotal , where f̂  is a vector of genomic values captured by genetic markers linked to the genomic 
feature of interest, ̂r  is a vector of genomic values captured by genetic markers outside the genomic feature. In the 
cross validation procedure, we estimated genomic parameters using the phenotypes from the DGRP lines in the 
training data (90% of the lines) and predicted the total genomic value of DGRP lines in the validation data (10% 
of the lines). We then calculated Spearman correlations between the total genomic values predicted with or with-
out the observed phenotypes set to missing. For the simulated data and for the observed DGRP data we defined 
50 cross training (validation) data subsets and applied these to each genomic feature. For each genomic feature, 
the predictive ability was defined as the average correlation of the 50 cross validations. For comparing the 
GBLUP-derived set tests with the predictive ability of the GFBLUP model, we calculated the Spearman rank based 
correlation between the level of significance of the set test statistic and the predictive ability.

CVAT (and its extensions) exemplified on CCRT.  We applied the GBLUP-derived CVAT on CCRT 
measured in the DGRP. The CVAT test statistic was chosen based on its good performance in the simulation 
studies (see first section of Results). Individual genes and gene ontology (GO) terms defined genetic marker sets 
(genomic features) for which TCVAT was computed. The relationship between this test statistic and the predictive 
ability of incorporating these GO terms as features in the GFBLUP model15 was considered.

DGRP data.  Drosophila lines.  The phenotypic and genotypic data originate from the Drosophila melano-
gaster Genetic Reference Panel (DGRP)17, 18. All data can be accessed via the website: http://dgrp2.gnets.ncsu.edu/. 
The DGRP consists of 205 inbred lines obtained by 20 generations of full-sib mating from the offspring of single 
wild-caught females collected from the Raleigh, NC, USA population, and which have full genome sequence 
data available17, 18. All flies were reared under standard culture conditions (cornmeal-molasses-agar-medium, 
25°C, 60–75% relative humidity, 12-hr light-dark cycle). The DGRP is polymorphic for common inversions and 
Wolbachia pipientis infection status18. These factors were included in the models described below as fixed effects.

Quantitative trait phenotype.  Chill coma recovery time (CCRT) for 159 DGRP lines was measured by trans-
ferring three to seven day old flies without anesthesia to empty vials, and placing them on ice for three hours. 
Flies were transferred to room temperature, and the time it took for each individual to right itself and stand on 
its legs was recorded41. There were two replicates of ~50 flies/sex/line (total N = 32,231; female N = 16,170; male 
N = 16,061).

Genotypes.  Genotypes were obtained from whole genome sequences using an integrative genotyping proce-
dure18. All analyses were based on segregating biallelic single nucleotide polymorphisms (SNPs) with minor allele 
frequencies ≥0.05 and for which the Phred scaled variant quality was greater than 500 and the genotype call rate 
was ≥0.8, for a total of 1,725,755 SNPs distributed on six chromosome arms (2L, 2R, 3L, 3R, 4 and X).

Genomic features.  Genomic features were defined at gene-level and GO level. Genes grouped according to a spe-
cific GO term were considered a genomic feature. Genes were linked to the ‘Biological Processes’ (BP), ‘Molecular 
Function’ (MF), and ‘Cellular Component’ (CC) GO terms42 using the BioConductor package ‘org.Dm.eg.db’ v. 
2.1443. Only GO terms with at least 10 directly evidenced genes were used in the analyses. SNPs were mapped to 
FlyBase genes using the v5.49 annotations of the D. melanogaster reference genome17, 18, 44. Only the 963,235 SNPs 
located within genes (i.e. within open reading frames) were used for the genomic feature. In total the markers 

http://dgrp2.gnets.ncsu.edu/
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were annotated to 10,517 genes and 1,117 GO terms. A total of 1,725,755 markers were used in all analyses, and 
the number of markers linked to a single GO term ranged from 23–163,938.

Single and multiple trait CVAT.  We applied CVAT to the CCRT data, and considered CCRT in males and 
females as two different, but correlated traits. The multiple trait CVAT analysis was based on phenotypic records 
of the quantitative trait adjusted for relevant factors using the following multi-trait linear mixed model:
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y1 and y2 are vectors of phenotypes for trait 1 (males) and 2 (females), X1 and X2 are design matrices for fixed 
effects of inversion karyotypes and Wolbachia infection status and b1 and b2 are the vectors of these fixed effects. 
Z1 and Z2 are design matrices linking observations to genomic values, g1 and g2 are vectors of total genetic values. 
Q1 and Q2 are design matrices for replicate within line effects, l1 and l2 the vectors of replicate within line effects, 
and e1 and e2 are vectors of residuals for trait 1 and 2.
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Since the phenotypes for males and females were recorded in different environments, we assume that σ = σ = 0e
2

e
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.

The CVAT test statistic, TCVAT, was computed using the vectors of total genomic values in males and females, g1 
and g2 from the multiple trait analyses. The within trait CVAT test statistics were computed as = ′^ ^g gTCVAT 1 fM 1

 for 
males (trait 1) and = ′^ ^g gTCVAT 2 fF 2

 for females (trait 2). The across trait CVAT test statistics were computed as 
= ′ = ′^ ^ ^ ^g g g gT or TCVAT 1 f CVAT 2 fMF 2 FM 1

 which consider the covariance between the total genomic effect for all mark-
ers = ∑ =^ ^g w( s )1 i 1

m
i 1i

 of trait 1 (or trait 2) and the genomic effect for a feature = ∑ =^ ^g w( s )f i 1
m

i 22
f

i
 of trait 2 (or trait 1).

The single trait CVAT was done by analysing phenotypes for males and females separately using the same fixed 
and random factors as in the multiple trait model presented above.

An empirical distribution of these test statistics was based on a competitive null hypothesis using the permu-
tation procedure described earlier. Two competive null hypotheses were used to test if the observed test statistics 
of the genomic feature differs from the test statistics obtained by randomly sampling genetic markers from (a) 
exclusively genic regions or (b) the whole genome (i.e. genic and intergenic regions). Thus empirical distributions 
were obtained by either sampling genetic markers randomly from gene regions or the whole genome.

Results
Comparison of set test statistics on simulated data.  Comparison of power for set test statistics.  The 
covariance association test, TCVAT, was generally more powerful (i.e. highest F1 score) than other set test statistics, 
across all scenarios (Fig. 1) under the random model. The figure displays estimated power for different set test 
statistics across 3 different trait heritabilities (h2), three number of replicates (Nrep), and 4 levels of proportion of 
additive genetic variance explained by causal SNPs (hf

2). The F1 score was calculated for the average of each set test 
result over a dilution range of 0 to 2,000 non-causal SNPs added to the C1 causal set. The superior performance of 
CVAT becomes more pronounced as the genomic heritability increases (left to right column of Fig. 1), genomic 
variance explained by feature increases (darker colour of points in Fig. 1), and number of replicates increase (top 
to bottom row of Fig. 1). Slightly less power was observed for the score based test statistic TScore followed closely 
by the set test statistic TSum based on sums of single marker test statistics (marker effects ŝ  or t-statistics). This 
trend is observed across all scenarios. All of the aforementioned set test statistics mostly outperform the count 
based set test statistic TCount at p-value cut-offs of 0.05 and 0.01. However, when the feature explains 50% of the 
genomic variance (i.e. hf

2 = 0.5) the power of TCount (using a stringent single marker p-value cut-off (p < 0.01)) 
improves, as heritability and number of replicates increase, such that it’s power reaches levels comparable to the 
score based set test statistic (Fig. 1).

Relationship between set test statistics.  The p-values of set test statistics TCVAT and TScore were highly correlated 
(0.96) with each other (Fig. 2). The figure shows the relationship between the minus logarithm of the p-values for 
the observed set test statistics. The results represented is for a genomic heritability of 30% and where the genomic 
feature explains 30% of the genomic variance (i.e. h2 = 0.3 and hf

2 = 0.3). Although less pronounced, TCVAT and 
TScore also showed a high correlation with TSum of single marker effects ŝ  (0.87 and 0.85, respectively) and 
t-statistics (0.87 and 0.85, respectively). Lower correlations were observed between TCVAT and TCount at p-value 
cut-offs of 0.05 (0.76) and 0.01 (0.52). This was also the case for TScore and TCount showing a correlation of 0.74 at a 
p-value cut-off of 0.05 and 0.48 at p-values less than 0.01.

Relationship between set test statistics and predictive ability of the GFBLUP model.  The three set test statistics 
(TCVAT, TScore, and TSum) were all highly correlated to the predictive ability of the GFBLUP model (ranging from 
0.59 to 0.62, respectively, Fig. 3). The pair-wise plots presented in Fig. 3 show the relationship between the minus 
logarithm of the p-value for the observed set test statistic and the predictive ability of the GFBLUP model. The cor-
relation between predictive ability and the count based set test statistics was slightly lower ranging from 0.34 to 0.48.
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Influence of genomic feature and trait specific factors on detection power.  Here we present the 
results for the GBLUP-derived CVAT set test statistic (Fig. 4). We focus on the results of the CVAT test statistic 
since it had the best performance (i.e. highest F1 score across all simulation scenarios, Fig. 1). The patterns 
observed are very similar for the other set test statistics (results not shown). Power to detect genomic features 
affecting the phenotypes was influenced both by trait and genomic feature specific factors. The proportion of the 
genomic variance explained by the genomic feature (hf

2) greatly impacted detection power (higher levels of power 
from left to right columns of Fig. 4) and robustness towards dilution, i.e. increasing the proportion of non-causal 
SNPs in the genomic feature (curves as a function of dilution are more steep with decreasing hf

2 in Fig. 4). Power 
to detect genomic features was low if both genomic heritability and proportion of genomic variance explained by 
genomic feature was low (hf

2 = 0.1 and h2 = 0.1), even without dilution. Impact of dilution was less severe when 
the proportion of genomic variance explained by genomic feature was highest (hf

2 = 0.5). This increased robust-
ness towards dilution resulted in power above 40% in all cluster model scenarios with Nrep = 50 replicates within 
line and a genomic heritability of 50%. The level of genomic heritability (h2) was positively correlated with power 
(Fig. 4). However, at high hf

2 and in absence of dilution all genomic features were detected regardless of overall 
genomic heritability, but with some false positives. Furthermore, if hf

2 was high, the detection power of CVAT for 
high heritability traits were less affected by dilution than low heritability traits (steeper slope of upper-right panel, 

Figure 1.  Comparison of detection power between set test statistics. The F1 score (x-axis) was used to measure 
the performance of the GBLUP derived set test statistics (y-axis), i.e. TCVAT (CVAT), TScore (Score), TSum using 
single marker effects ∑^( s )2  or using single marker t-statistics ∑ ^( t )s

2 , and TCount with a threshold of p-value < 0.05 
< .ˆ(I{Pr(t ) 0 05})s  and p-value < 0.01 < .ˆ(I{Pr(t ) 0 01})s . The F1 score was calculated using the average set test 

statistic results over a dilution range of adding 0 to 2000 non-causal SNPs to the C1 causal set. P-value cut-off for 
the set test statistic was 0.05. Each panel represent a different combination of genomic heritability (h2) and 
number of replicates within lines (Nrep), whereas hf

2 is visualized by the colour gradient. Results are for the 
scenarios with three different levels of genomic heritability (h2 = 0.1, 0.3 or 0.5, columns left to right), four 
different levels of proportion of genomic variance explained by the causal markers in the genomic feature 
(hf

2 = 0.1, 0.2, 0.3 or 0.5, light to dark colour), and three different levels of number of replicates within lines 
(Nrep = 5, 10, or 50, rows top to bottom). Causal sets, including SNPs in feature (C1) and not in feature (C2), 
consisted of SNPs randomly selected from the complete SNP set (random causal model).



www.nature.com/scientificreports/

9Scientific Reports | 7: 2413  | DOI:10.1038/s41598-017-02281-3

compared to lower-right panel of Fig. 4). Dilution decreased power in all simulation scenarios (decreasing curves 
on all panels of Fig. 4). Detection power was slightly higher if causal SNPs in the genomic feature were clustered 
in smaller regions as compared to distributed randomly on the genome (results not shown). Furthermore, detec-
tion power increases with increasing numbers of replicates within line (Nrep = 5, 10, or 50).

Application of CVAT on CCRT data.  Since the simulation study suggested that CVAT was the most pow-
erful set test statistic, we applied CVAT and its extensions to CCRT data.

Determination of linear mixed model to be used for CVAT analysis.  Initially we fitted a series of linear mixed 
models (GBLUP or GFBLUP) to determine the final model to be used in the subsequent CVAT analyses of the 
CCRT trait in DGRP. Models were fitted for single and multiple traits, including one or two features (in this case 
genes and inter-genic regions) and considering gene based and genome based null hypotheses. Trait heritability 
for CCRT estimated using a multiple trait GBLUP model was 0.42 for males and 0.48 for females. The genetic cor-
relation between males and females was 0.97. Partitioning genomic variance into genes and inter-genic regions, 
using a two-component genomic feature model, did not significantly improve the model fit (likelihood ratio test 
statistic less than one; p-value > 0.1). The empirical distribution of the CVAT test statistic was determined under 
two null hypotheses: One involving random sampling of genetic markers from gene regions (gene based), and one 
based on random sampling of genetic markers from the whole genome (whole genome based). Under the gene 
based null hypothesis GO terms were slightly more significant compared to the whole genome based null hypoth-
esis both in the case of females and males (Fig. S1 panels (a) and (b) respectively). Furthermore, the association 

Figure 2.  Relationship between the significance levels of different set test statistics. Scatter plots of all pairwise 
combinations of significance between the set test statistics, i.e. TCVAT (CVAT), TScore (Score), TSum using  
single marker effects ∑^( s )2  or using single marker t-statistics ∑ ^( t )s

2 , and TCount with a threshold p-value < 0.05 
< .ˆ(I{Pr(t ) 0 05})s  and p-value < 0.01 < .ˆ(I{Pr(t ) 0 01})s . Significance, shown as −log(p), was measured for the 

association of simulated phenotype with genomic feature over a dilution range of adding 0 to 2000 non-causal 
SNPs to the C1 causal set. Plots are arranged such that all plots in a row share a common y-axis, and all plots in a 
column share a common x-axis. The names of the x- and y-axes are shown in the diagonal boxes. Genomic 
heritability was set to 30% (h2 = 0.3), and the proportion of genomic variance explained by the feature was 30% 
(hf

2 = 0.3). The random causal model was used, randomly selecting causal SNPs (C1 and C2) from the complete 
set of SNPs. Five replicates were used within each line (Nrep = 5).

http://S1
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of GO terms with CCRT was highly correlated between males and females (Fig. S1 panel (c) and (d)) under both 
the gene based or whole genome null hypothesis (correlation = 0.95 and 0.98 respectively).

The significance of TCVAT did not show a considerable difference whether using the two trait or single trait 
models (the third extension to TCVAT, Fig. S1 panel (e) and (f)). Therefore, results for the CCRT trait reported here 
are from a one-component, two trait model using a gene based null hypothesis.

CCRT associated GO terms and genes detected using CVAT.  Several GO terms were significantly associated 
to CCRT in both males and females (p-value adjusted for multiple tests ≤0.001, Table 1). Table 1 shows the 
highest-ranking GO terms for males and females (MT-CVAT within trait), as well as the significance of GO terms 
when considering the covariance between the total genomic effect for all markers in males, and the genomic 
effect for markers in the feature for females and vice versa (MT-CVAT across traits). Eight GO terms for females 
and nine GO terms for males were significantly associated with CCRT. Males and females shared all but one 
of the most significant GO terms (p-value ≤ 0.001). The GO term “ATP-dependent DNA helicase activity” 
(GO:0004003, p = 0.0015) for females being only slightly above the 0.001 p-value cut-off. The across trait (traits 
being females and males) MT-CVAT set test results showed similar patterns as the within trait CVAT set test.

However, all GO terms reported in Table 1 had unadjusted p-values below 0.01, suggesting that these may be 
biologically relevant for CCRT in both sexes. In addition, the top-ranking GO terms significantly associated with 
CCRT were also predictive of the phenotypes as assessed in a cross validation study (Fig. 5).

There was a substantial overlap among the SNPs associated with each of the GO terms (Fig. 6). In particular, 
“Rho GTPase activator activity” (GO:0005100) and “Rho protein signal transduction” (GO:0007266) shared more 
than 98% of the SNPs. These two GO terms also shared a substantial number of SNPs (59–67%) with the remain-
ing GO terms except for “ATP-dependent DNA helicase activity” (GO:0004003) which did not share any SNPs 
with the other GO terms.

Considering the overlap of SNPs between GO terms, further investigations were required to better under-
stand the biological relevance of the CVAT results obtained at the GO term level. Therefore, we applied the 
CVAT set test at the individual gene level using only the genes that were part of the significantly associated 
GO terms. This enabled us to identify a number of genes that were associated with CCRT (Fig. 7). In particu-
lar, we found that RhoGAP88C (FBgn0086901) was significantly associated with CCRT and that this gene is 

Figure 3.  Relationship between the predictive ability of GFBLUP and significance levels of different set test 
statistics. Scatter plots showing the relationship between significance of set test statistics (x-axis) and predictive 
ability (PA, y-axis) of GFBLUP. Significance is expressed as −log(p). The different panels show results for the 
different set test statistics: TCVAT (CVAT), TScore (Score), TSum using single marker effects ∑^( s )2  or using single 
marker t-statistics ∑ ^( t )s

2 , and TCount with a threshold p-value < 0.05 < .ˆ(I{Pr(t ) 0 05})s  and p-value < 0.01 
< .ˆ(I{Pr(t ) 0 01})s  Genomic heritability was set to 50% (h2 = 0.5), and the proportion of genomic variance 

explained by the feature was 30% (hf
2 = 0.3). The random causal model was used, randomly selecting causal 

SNPs (C1 and C2) from the complete set of SNPs. Five replicates were used within each line (Nrep = 5).
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part of all but one of the significant GO terms (Fig. 7). In addition, we found evidence that several other genes 
including antennapedia (FBgn0260642), ultrabithorax (FBgn0003944), and extra macrochaetae (FBgn0000575) 
contributed to the significance of the GO term “Midgut development” (GO:0007494), and the genes mago nashi 
(FBgn0002736) and roughoid (FBgn0003295) contributed to the significance of the GO term “Epidermal growth 
factor receptor signaling pathway” (GO:0007173). Finally, we found that the genes Chd3 (FBgn0023395) and hel-
icase 89B (FBgn0022787) contributed to the significance of the GO term “ATP-dependent DNA helicase activity” 
(GO:0004003).

Discussion
We demonstrated that GBLUP-derived set tests are powerful for detecting genomic features enriched for causal 
variants affecting a quantitative trait in populations with a low degree of linkage disequilibrium. The different 
set tests were compared using simulated data generated from DGRP genotypes further illustrating the impact of 
trait- and genomic feature-specific factors on detection power. These set tests provide a formal statistical mode-
ling framework for borrowing and evaluating information across a wide range of experimental studies that may 
help provide novel insights into genetic and biological mechanisms underlying complex traits. The methods are 
computationally fast allowing us to rapidly analyze many different classes of genomic features. This will help to 
discover genomic features enriched for causal variants that can be used to develop more accurate predictions 
using GFBLUP models. GBLUP-derived set tests are based on a flexible linear mixed modelling framework that 
allows us to adjust for other known genetic and non-genetic factors, while using existing standard software. 
Importantly, the GBLUP models can be extended in several ways that potentially can increase detection power.

Figure 4.  Influence of genomic feature, trait specific factors and dilution on detection power. In each row the 
heritability (h2) is kept constant while the proportion of genomic variance explained by the feature increases 
(hf

2 = 0.1, 0.2, 0.3, 0.5). Moving down each column h2 increases from 0.1 to 0.2 and 0.5 while hf
2 is kept constant. 

The power to detect features enriched for causal variants was quantified by the F1 score shown on the y-axis of 
each panel. P-value cut-off for the set test statistic was 0.05. F1 score is shown as a function of dilution, i.e. 
adding up to 2000 non-causal SNPs to the feature, on the x-axis. The number of replicates (Nrep = 5, 10 and 50) 
within line is depicted by the colour scale.
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Comparison of set tests.  Several GBLUP-derived set tests were compared in terms of statistical power 
to detect genomic features enriched for causal variants. Despite GBLUP being considered a “black box” mod-
eling approach we showed that it is possible to derive powerful set tests from it. In particular, in all scenarios 
evaluated we showed that the covariance association test (CVAT) had similar power to a commonly used score 
based approach28 (also known as the sequence kernel association test, SKAT), and that both CVAT and SKAT 

GO ida

Empirical p-valuesb,c,d

Ontologye Gene Ontology termFemale Male
Male/Female 
covariance

Female/Male 
covariance

GO:0007266 <1 × 10−4 <1 × 10−4 <1 × 10−4 <1 × 10−4 BP Rho protein signal transduction

GO:0035160 <1 × 10−4 <1 × 10−4 <1 × 10−4 <1 × 10−4 BP Maintenance of epithelial integrity, 
open tracheal system

GO:0005100 <1 × 10−4 <1 × 10−4 <1 × 10−4 <1 × 10−4 MF Rho GTPase activator activity

GO:0016323 2 × 10−4 3 × 10−4 1 × 10−4 4 × 10−4 CC Basolateral plasma membrane

GO:0007173 3 × 10−4 7 × 10−4 7 × 10−4 6 × 10−4 BP Epidermal growth factor receptor 
signaling pathway

GO:0035277 3 × 10−4 <1 × 10−4 <1 × 10−4 3 × 10−4 BP Spiracle morphogenesis, open tracheal 
system

GO:0008289 5 × 10−4 4 × 10−4 3 × 10−4 4 × 10−4 MF Lipid binding

GO:0007494 1 × 10−3 6 × 10−4 4 × 10−4 2 × 10−4 BP Midgut development

GO:0004003 1.5 × 10−3 2 × 10−4 5 × 10−4 8 × 10−4 MF ATP-dependent DNA helicase activity

Table 1.  Gene ontology terms significantly associated with CCRT for males and females. aGO id = gene 
ontology id. bp-values smaller than or equal to 0.001 were included for each sex. cThe empirical distributions 
were obtained by randomly sampling from gene regions on the genome. d10,000 permutations were performed 
for each GO term. For p-values less than 1 × 10−4, more permutations would yield more precise p-values. 
eBP = Biological Process, MF = Molecular Function and CC = Cellular Component.

Figure 5.  Relationship between gene ontology (GO) term CVAT test statistic and predictive ability of the 
GFBLUP model for chill coma recovery time (CCRT). The significance of GO terms related to CCRT in 
Drosophila melanogaster in females and males as determined by the CVAT test statistic (expressed as gene based 
−log(p), x-axis) from single trait analyses, plotted against the predictive ability (PA) of the single trait GFBLUP 
model (y-axis).
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outperformed the methods based on summing the number of single marker statistics in the feature. Both CVAT 
and SKAT are fast and powerful methods to identify genomic features enriched for causal variants and thereby 
contribute to develop more accurate prediction models. One advantage of the CVAT approach is that it builds on 
a flexible linear mixed modelling framework that can be extended in several ways that potentially can increase 
detection power. Extensions include the consideration of different levels of a hierarchical feature, multiple genetic 
components having different genomic value distributions and a multiple trait GBLUP.

Set tests based on counting test statistics (TCount) appear to have lower power compared to test statistics based 
on summing the squared single marker statistics (TSum). This may in part be explained by the simulated genetic 
architecture which were enriched for causal variants with small to moderate effects. In general, methods based 
on a count test statistic are likely to have high power to detect association if the genomic feature harbours genetic 
markers with large effects, but it will not detect a genomic feature with many genetic markers having small to 
moderate effects45. Our results show that in such cases, it is more powerful to use a test statistic, such as the mean 
or sum of the single marker statistics for the genomic feature.

Figure 6.  Heatmap showing the overlap between SNPs of significant GO terms. Each square [i, j] shows 
the proportion of SNPs associated with GO term i, as well as GO term j. Where i indexes rows and j indexes 
columns. Darker colours represent larger proportions of SNPs that overlap between GO terms. Only the most 
significant GO terms, presented in Table 1, are included.

Figure 7.  Heatmap showing the individual genes associated to CCRT for each of the top GO terms. The colour 
scale indicates the degree of association (expressed as −log(p)). The darkest blue colour indicates −log(p) = 4 
and as the colour fades p-values increase.
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Finally, we have shown a clear link between the significance levels of the set test statistics and the level of 
predictive ability using these sets as features in the GFBLUP model. This link could be exploited to build more 
accurate GFBLUP models in a computationally efficient way. That is, using the GBLUP model to identify genomic 
features enriched for associated variants and subsequently apply the identified sets as features in the GFBLUP 
model.

Factors influencing detection power.  Several trait and feature specific factors can influence the power 
to determine whether a genomic feature is enriched for causal variants. Power is positively correlated with the 
proportion of genomic variance explained by the genomic feature, and power decreases with the addition of 
non-causal SNPs in the feature (dilution). Furthermore, the genetic architecture of the causal variants (distributed 
randomly or clustered along the genome) also influenced power. The increased detection power and resistance 
towards dilution in the case where the true causal SNPs are clustered in smaller genomic regions is likely due to 
larger effect size of individual markers in these regions. Not surprisingly, power is increased if the trait is highly 
heritable and the number of phenotypic records available is high. These patterns were consistent across the differ-
ent set tests and are factors that need to be considered in the analyses of real data.

Influence of linkage disequilibrium on detection power.  We compared the GBLUP derived set tests based on 
genotypes obtained from the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. The 
population consist of 205 largely unrelated lines with a low degree of linkage disequlibrium across their genomes. 
Thus, our results suggest that GBLUP-derived set tests may have high power in situations where individuals are 
largely unrelated such as human study populations. In a population of highly related individuals the general 
genomic relationship will be a good approximation of the genomic relationship at the true causal variants2. This 
will lead to more accurate estimates of overall genomic value. On the other hand due to extensive linkage disequi-
librium it may be difficult to accurately estimate single marker effects and this will in turn influence the feature set 
test statistic. Therefore more research is required to understand the influence of genetic relatedness and degree of 
linkage disequilibrium on detection power of the GBLUP derived set tests.

Influence of null hypothesis on detection power.  In this study we compared the set tests using a competitive 
null hypothesis. The competitive null hypothesis states that the degree of association within a genomic feature 
is equal to that of a random set of genetic markers. An alternative is the self-contained null hypothesis46–48. The 
self-contained null hypothesis states that the genomic feature, by it self, does not display any association to the 
phenotypic trait. This is usually done by testing whether the variance component or the test statistics for the 
genomic feature are zero. The self-contained may be preferable over a competitive, as it has more power in gen-
eral46, and the interpretation is simpler, as it determines whether there is association or not. On the other hand 
the competitive null hypothesis is perhaps more biologically relevant as it is in agreement with the infinitesimal 
model49, 50 which is a commonly used genetic model assuming that there are many causal variants each with small 
to moderate effects underlying the complex trait.

Further extensions of GBLUP-derived set tests and alternative methods.  The GBLUP-derived 
set test modeling framework can be extended in several ways that potentially can increase detection power. First, 
multiple feature sets can be fitted in the model (e.g. a GFBLUP model), such as grouping markers based on their 
minor allele frequency19, 20 or prior QTL information16. By fitting multiple feature sets genetic effects are esti-
mated based on a mixture of normal distributions enabling further differential shrinkage of single marker effects 
across feature sets. Second, further shrinkage of single marker effects within features may be achieved by using 
a weighted genomic relationship matrix11, 51 for each feature set. Third, a multiple trait GBLUP model21, 22 can be 
fitted. This can increase the accuracy of the overall genomic effect21, 22 and thereby the single marker effect which 
in turn will lead to a more accurate test statistic for the genetic marker set. Fourth, in animal and plant popula-
tions with extended pedigrees we might use information on inviduals without genotype information51 to increase 
accuracy of the overall genomic value. We are currently investigating these extensions hypothesizing that they, in 
some situations, may lead to increased power of the GBLUP-derived set test.

Comparison to Bayesian methods.  The GBLUP and GFBLUP models used in this study can also be implemented 
using Bayesian methods52–55. In particular Bayesian mixture models such as BayesB56, BayesR56, 57 or Bayesian 
Lasso models58 are relevant alternative methods. For these methods it is also possible to derive test statistics that 
quantify the joint effect of the markers in the feature set. Furthermore, they also allow for differential shrinkage of 
marker effects within feature sets and can be used to fit multiple feature sets. More investigations are required to 
compare these methods to the GBLUP-derived set test and investigate to what extend these methods will increase 
detection power.

Application of CVAT on CCRT.  Although the main objective of this paper was to compare different GBLUP 
derived set tests, we would like to discuss, albeit very condensed, the plausible biological relevance of our results.

CCRT was strongly associated with the GO terms ‘Rho protein signal transduction’ (GO:0007266) and ‘Rho 
GTPase activator activity’ (GO:0005100) in both males and females. Rho genes’ functional relevance, with regards 
to CCRT, has been implied by their involvement in (a) intracellular signal transduction pathways59, (b) indirectly 
mediating circadian rhythm, through actin regulation60 as well as (c) contributing to ion homeostasis by regulat-
ing K+ channel cell surface expression61.

“Midgut development” (GO:0007494) was also among the high-ranking GO terms for association with CCRT. 
It is well established that the midgut of insects is an important site for the exchange of ions with the hemolymph62, 63.  
Insect cold resistance is directly related to maintenance of water and ion homeostasis64–66. In the fall field cricket, 
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Gryllus pennsylvanicus, the midgut has been shown to be the most sensitive site for the exchange of ions and 
water during cold exposure67. In the midgut cold exposure caused rising Na+ levels causing a disruption in 
water homeostasis ultimately leading to an increased K+concentration in the hemolymph65. It is ultimately this 
increased K+ concentration that causes an electrophysiological failure of the neuromuscular system and subse-
quent chill-coma68–70.

There was a substantial overlap among the SNPs associated with each of the top-ranking GO terms. In order 
to zoom in on relevant genes underlying these GO terms, the CVAT set test was also applied at the individual 
gene level of the significant GO terms. This enabled us to identify a number of the genes that was associated to 
CCRT. In particular, we found that the crossveinless-c gene (FBgn0086901), was highly significant and is a part 
of both Rho protein signal transduction and Rho GTPase activator activity GO terms42. Crossveinless-c is an 
important regulator of Rho GTPase activity71. The Rho-family of GTPases are in turn associated with the direct 
regulation of the actin cytoskeleton72. Chilling has been shown to disrupt cytoskeletal organization in primary 
embryonic cultures of Drosophila cells73. Interestingly, diapausing mosquitos (Culex pipens) have greater abun-
dance of polymerized actin at muscle fiber intersections in the midgut74. Thus, regulation of cytoskeletal function 
may be implicated as an important component of cold acclimation.

In general, biological interpretation might be hampered by the definition (or misspecification) of the genomic 
feature and a potential large overlap in the genetic marker sets between the different genomic feature classes. In 
the latter case, biological interpretation may be improved by using methods that take the overlap into account75.

Conclusion
GBLUP-derived set tests are powerful compared to existing methods for detecting genomic features enriched for 
causal variants in populations with a low degree of linkage disequilibrium. The tests can be implemented using 
standard BLUP models, and can be extended in several ways that potentially can increase detection power. The 
methods are computationally fast allowing us to rapidly analyze many different classes of genomic features. This 
will help to discover genomic features enriched for causal variants that can be used to develop more accurate 
predictions using GFBLUP models.
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