220 research outputs found

    Surface Photometry and Metallicity of the Polar Ring Galaxy A0136-0801

    Get PDF
    We present a photometric and spectroscopic study of the polar ring galaxy A0136-0801 in order to constrain its formation history. Near-Infrared (NIR) and optical imaging data are used to extract surface brightness and color profiles of the host galaxy and the wide polar structure in A0136-0801. The host galaxy dominates the light emission in all bands; the polar structure is more luminous in the optical bands and is three times more extended than the main spheroid. The average stellar population in the spheroid is redder than in the polar structure and we use their (B-K) vs. (J-K) colors to constraint the ages of these populations using stellar population synthesis models. The inferred ages are 3-5 Gyrs for the spheroid and 1-3 Gyrs for the polar structure. We then use long slit spectra along the major axis of the polar structure to derive the emission line ratios and constrain the oxygen abundance, metallicity and star formation rate in this component. We find 12+log(O/H) = 8.33 +- 0.43 and Z ~ 0.32 Zsun, using emission line ratios. These values are used, together with the ratio of the baryonic masses of the host galaxy and polar structure, to constraint the possible models for the formation scenario. We conclude that the tidal accretion of gas from a gas rich donor or the disruption of a gas-rich satellite are formation mechanisms that may lead to systems with physical parameters in agreement with those measured for A0136-0801.Comment: 17 pages, 9 figures. Accepted for publication in MNRA

    Multiwavelength study of interacting and peculiar galaxies

    Get PDF
    I present a multiwavelength study of a sample of peculiar galaxies in order to constraint the physics of interacting objects, to study how the physical processes affect the structure of galaxies, and to derive some hints on the formation and evolution history of such galaxies. One of the major open issues in modern cosmology is to understand how galaxies formed and evolved. Its likely that the formation of galaxies was dominated by two processes: the assembly of luminous and dark matter through accretion and merger, and the conversion of baryonic and non-baryonic matter into stars. This is the reason why the study of galaxy interactions has received an increasing attention both on the observational and the theoretical sides. Several theoretical works based on numerical simulations, have tested different plausible scenarios for the origin of peculiar galaxies, such as ``Tidal accretion'', ``Cold accretion'' and ``Merging''. For this reason, the sample of galaxies to use was selected in order to reproduce all these mechanisms. The first peculiar object that I studied is the minor axis dust lane galaxy NGC1947. I performed a detailed study of the main properties of this galaxy (Spavone et al 2009). In NGC1947 are present components with different angular momentum, infact gas and dust rotate along the minor axis while stars rotate along the major one. This is a clear evidence that it cannot be the result of a single protogalactic cloud collapse, but rather the result of an interaction event. I performed a detailed study of the main properties of this galaxy and compared them with the prediction of simulations. Putting together all this evidences it was difficult to disentangle in a non ambiguous way the two possible scenarios, even though some aspects can help us in understanding. First of all, the galaxy does not present clear signs of interaction, such as tidal tails and so on, and this leads to the conclusion that the merger occurred about 10 Gyrs ago, a fact which is not consistent with the fact that, according to my estimate, the last burst of star formation occurred 1 Gyr ago. So I can say that the accretion scenario is favoured. The second object in my sample is the Polar Ring Galaxy (PRG) NGC4650A. I used high resolution NIR and optical spectroscopy along the North and South side of the polar disk, to measure the metallicity of the HII regions in the polar disk of this galaxy because, if it formed from the accretion of external cold gas from cosmic web filaments, we expect metallicities similar to those of late type galaxies, while if the metallicities are similar to those of early type galaxies, the accretion from a gas rich donor is favoured. I estimated the metallicity by using both direct and empirical methods, the Stellar Formation Rate (SFR), and the metallicity gradient along the disk. The average metallicity for the polar disk of NGC4650A turned out to be Z=0.2Z⊙Z = 0.2 Z_{\odot}, which is lower than the typical values found in spiral galaxies, and is instead consistent with the metallicities predicted for the formation of disks by cold accretion processes (Z∼ 1/10Z⊙Z \sim\ 1/10 Z_{\odot}), due to the accretion of pristine gas in the cold streams. Moreover, also the absence of any metallicity gradient is consistent with the infall of metal-poor gas from outside which is still forming the disk (see Spavone et al 2010 for details). As a follow up of this work, I obtained observing time at the TNG telescope to observe the PRGs UGC7576 and UGC9796. I performed the study of the chemical abundances also for these galaxies in order to constrain their formation history (Spavone et al. submitted). Both PRGs have metallicities (respectively 0.4 Z⊙Z_{\odot} and 0.1 Z⊙Z_{\odot}) lower than that observed in spiral galaxies of the same total luminosity and, given their present star formation rate, this values is again consistent with the predictions of the cold accretion mechanism for disk formation. UGC7576 is an isolated galaxy and the absence of close companions led to exclude both the tidal accretion from a donor galaxy and the merging with another galaxy. UGC9796 is instead in a group and has 5 close companions with an amount of HI gas comparable with that of UGC9796. The merging scenario is however ruled out because in order to produce a massive polar disk such as those observed in UGC9796 is required a merging with high mass ratios (7:1 or 10:1) and this would destroy the ordered motion of the central galaxy, transforming it into an elliptical-like, not rotationally supported galaxy. In conclusion, for this object, both the tidal accretion and the cold accretion seem to be plausible scenarios. Finally, to analyze also another type of merging process, I am studying the pair of interacting galaxies known as CSL-1. By using high resolution spectroscopy (FORS1@VLT) and imaging (HST) I am studying the morphology, light distribution and structural parameters of this system, to test the dry-merger scenario (cf. ``A prototype dry-merger caught in the act'', M. Paolillo , G. Covone, C. Nipoti, M. Spavone, M. Capaccioli, G. Longo, A.Cimatti, L. Ciotti, in preparation). In order to investigate also the minor merging processes I also studied the photometric and kinematical properties of a compact group of galaxies belonging to the Hickson's catalogue. The group analyzed in this work was HCG62, one of the nearest group in the celestial Southern hemisphere, which was selected by cross correlating the available X-ray and optical data. Galaxies in compact groups are in a very dense configuration in the sky, having a mean separation comparable with their dimensions and a very low velocity dispersion. Taking into account that theories on formation and evolution of galaxies predict that the intensity and frequency of interactions strongly depend on the density of the environment, compact groups may be considered the ideal place where to test interaction processes, such as dynamical friction, tidal interaction, collisions, merging and so on. The main goal of this part of my work was to derive some hints on the formation and evolutionary history of compact groups, in order to address the possible scenario for the formation of structure in the Universe, and to determine the evolutionary status of the studied objects. To this aim, I performed a detailed study of the kinematical properties of HCG62, that revealed the presence of many peculiarities in the dominant galaxy of the group, NGC4778, such as the presence of a kinematically decoupled and counter-rotating core (KDC), or kinematical profiles strongly perturbed, also in the outer regions of this galaxy. Moreover, I also performed an analysis of the photometric properties of the whole group, to look for correlations between kinematical and photometric peculiarities. The absence of such correlations in HCG62, can be explained by stating that weak interactions do not perturb the rotation curves but produce morphological deformations in the outer regions, while the so called minor mergers perturb the rotation curves in the inner regions, without producing morphological peculiarities. The results obtained in this work are in good agreement with similar studies performed on the same group and with its observed X-ray properties (Spavone et al 2006). I was also Co-Investigator in two accepted proposals to observe, with the TNG telescope, a sample of Shakhbazian galaxy groups, with the aim of building a larger statistical sample and obtain redshift informations which are lacking for most Shakhbazian groups, and are needed to establish on firm grounds their physical nature. Groups of galaxies have been extensively studied in the past decades. Despite this effort, their evolution is yet not well understood. Loose groups are almost certainly still collapsing and are therefore crucial to uncover the formation processes shaping cosmic structures. As it was already mentioned, in compact groups a few member galaxies are compressed in a small volume of space with low relative velocities. Early theoretical studies suggested that in such high density environments the low velocity dispersion of compact galaxy groups would favor strong interactions and mergers, leading to rapid evolution (within ∼109\sim 10^9 yrs) into a single massive merger remnant. The best studied sample of compact groups to date is the one included in the Hickson catalogue; this sample however, is biased towards extremely high values of matter density and therefore it allows to investigate only the ``close-to-final'' stage of the complex dynamical evolution of groups. The density range bridging the field to these almost coalesced structures is still poorly explored, mainly due to the difficulties encountered in constructing reliable samples of `physically bound', low multiplicity groups. Shakhbazian Groups of galaxies (SHKGs) in spite of having been originally selected as ``compact groups of compact galaxies'', have been shown to sample a large range of spatial densities. To properly characterize the properties of these groups and their evolutionary path, I obtained more accurate redshift determination for a sample of 10 SHK, so almost doubling the sample of SHK groups, with detailed spectroscopic data. Main goals of this work are: i) obtain redshift estimates for groups without literature data, sampling the different sub-populations; ii) confirm the galaxy membership of the groups, which is currently based on photometric estimates for most of the objects; iii) study the dynamical status of the group and derive dynamical mass estimates; iv) study the stellar population of the member galaxies through comparison with population synthesis models, and the degree of activity from emission line measurements

    A kinematically decoupled component in NGC4778

    Full text link
    We present a kinematical and photometrical study of a member, NGC4778, of the nearest (z=0.0137) compact group: Hickson 62. Our analysis reveals that Hickson 62a, also known as NGC4778, is an S0 galaxy with kinematical and morphological peculiarities, both in its central regions (r < 5'') and in the outer halo. In the central regions, the rotation curve shows the existence of a kinematically decoupled stellar component, offset with respect to the photometric center. In the outer halo we find an asymmetric rotation curve and a velocity dispersion profile showing a rise on the SW side, in direction of the galaxy NGC4776.Comment: Proceedings of the first workshop of astronomy and astrophysics for student

    Metallicity of the polar disk in NGC4650A: constraints for cold accretion scenario

    Full text link
    We used high resolution spectra in the optical and near-infrared wavelength range to study the abundance ratios and metallicities of the HII regions associated with the polar disk in NGC4650A, in order to put constraints on the formation of the polar disk through cold gas accretion along a filament; this might be the most realistic way by which galaxies get their gas. We have compared the measured metallicities for the polar structure in NGC4650A with those of different morphological types and we have found that they are similar to those of late-type galaxies: such results is consistent with a polar disk formed by accretion from cosmic web filaments of external cold gas.Comment: Proceeding of the conference "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 200

    An Ultra diffuse Galaxy in the NGC 5846 group from the VEGAS survey

    Get PDF
    Many ultra diffuse galaxies (UDGs) have now been identified in clusters of galaxies. However, the number of nearby UDGs suitable for detailed follow-up remain rare. Our aim is to begin to identify UDGs in the environments of nearby bright early-type galaxies from the VEGAS survey. Here we use a deep g band image of the NGC 5846 group, taken as part of the VEGAS survey, to search for UDGs. We found one object with properties of a UDG if it associated with the NGC 5846 group, which seems likely. The galaxy, we name NGC 5846_\_UDG1, has an absolute magnitude of Mg_g = -14.2, corresponding to a stellar mass of ∼\sim108^8 M⊙_{\odot}. It also reveals a system of compact sources which are likely globular clusters. Based on the number of globular clusters detected we estimate a halo mass that is greater than 8×\times1010^{10} M⊙_{\odot} for UDG1.Comment: 5 pages, 4 figures, accepted for publication in A&

    Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    Get PDF
    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings

    Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    Get PDF
    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the two components coexist. This result is a strong constraint on the dynamics and formation history of this galaxy; it further supports the idea that polar disk galaxies like NGC~4650A were formed through the accretion of material that has different angular momentum.Comment: 14 pages, 10 figures; accepted for publication in Astronomy & Astrophysic

    VEGAS: A VST Early-type GAlaxy Survey. III. Mapping the galaxy structure, interactions and intragroup light in the NGC 5018 group

    Get PDF
    Most of the galaxies in the Universe at present day are in groups, which are key to understanding the galaxy evolution. In this work we present a new deep mosaic of 1.2 x 1.0 square degrees of the group of galaxies centered on NGC 5018, acquired at the ESO VLT Survey Telescope. We use u, g, r images to analyse the structure of the group members and to estimate the intra-group light. Taking advantage of the deep and multiband photometry and of the large field of view of the VST telescope, we studied the structure of the galaxy members and the faint features into the intra-group space and we give an estimate of the intragroup diffuse light in the NGC 5018 group of galaxies. We found that ~ 41% of the total g-band luminosity of the group is in the form of intragroup light (IGL). The IGL has a (g - r) color consistent with those of other galaxies in the group, indicating that the stripping leading to the formation of IGL is ongoing. From the study of this group we can infer that there are at least two different interactions involving the group members: one between NGC 5018 and NGC 5022, which generates the tails and ring-like structures detected in the light, and another between NGC 5022 and MCG-03-34-013 that have produced the HI tail. A minor merging event also happened in the formation history of NGC 5018 that have perturbed the inner structure of this galaxy.Comment: 21 pages, 15 figures. Accepted for publication in Ap

    An X-ray investigation of Hickson 62

    Get PDF
    We studied the X-ray properties of the Hickson Compact Group HCG62, in order to determine the properties and dynamic and evolutionary state of its hot gaseous halo. Our analysis reveals that the X-ray diffuse halo has an extremely complex morphological, thermal and chemical structure. Two deep cavities, due to the presence of the AGN hosted by the central galaxy NGC 4778, are clearly visible in the group X-ray halo. The cavities appear to be surrounded by ridges of cool gas. The group shows a cool core associated with the dominant galaxy. In the outer regions the temperature structure is quite regular, while the metal abundance shows a more patchy distribution, with large Si/O and Si/Fe ratios.Comment: Published in the Proceedings of the "I Workshop of Astronomy and Astrophysics for Students", Eds. N.R. Napolitano & M. Paolillo, Naples, 19-20 April 2006 (astro-ph/0701577

    VEGAS: a VST Early-type GAlaxy Survey. IV. NGC 1533, IC 2038 and IC 2039: an interacting triplet in the Dorado group

    Get PDF
    This paper focuses on NGC 1533 and the pair IC 2038 and IC 2039 in Dorado a nearby, clumpy, still un-virialized group. We obtained their surface photometry from deep OmegaCAM@ESO-VST images in g and r bands. For NGC 1533, we map the surface brightness down to μg≃30.11\mu_g \simeq 30.11 mag/arcsec2^{2} and μr≃28.87\mu_r \simeq 28.87 mag/arcsec2^{2} and out to about 4Re4R_e. At such faint levels the structure of NGC 1533 appear amazingly disturbed with clear structural asymmetry between inner and outer isophotes in the North-East direction. We detect new spiral arm-like tails in the outskirts, which might likely be the signature of a past interaction/merging event. Similarly, IC 2038 and IC 2039 show tails and distortions indicative of their ongoing interaction. Taking advantages of deep images, we are able to detect the optical counterpart to the HI gas. The analysis of the new deep data suggests that NGC 1533 had a complex history made of several interactions with low-mass satellites that generated the star-forming spiral-like structure in the inner regions and are shaping the stellar envelope. In addition, the VST observations show that also the two less luminous galaxies, IC 2038 and IC 2039, are probably interacting each-other and, in the past, IC 2038 could have also interacted with NGC 1533, which stripped away gas and stars from its outskirts. The new picture emerging from this study is of an interacting triplet, where the brightest galaxy NGC 1533 has ongoing mass assembly in the outskirts.Comment: Accepted for publication in The Astronomical Journal. High-resolution version of paper is available at the following link: https://www.dropbox.com/preview/VEGAS_IV.pdf?role=persona
    • …
    corecore