128 research outputs found

    Application of STORMTOOLS Coastal Environmental Risk Index (CERI) to Inform State and Local Planning and Decision Making along the Southern RI Shoreline

    Get PDF
    STORMTOOLS coastal environmental risk index (CERI) was applied to communities located along the southern coast of Rhode Island (RI) to determine the risk to structures located in the flood plain. CERI uses estimates of the base flood elevation (BFE), explicitly including the effects of sea level rise (SLR); details on the structure types, from the E911 emergency data base/parcel data, and associated first floor elevation (FFE); and damage curves from the US Army Corp of Engineers North Atlantic Coast Comprehensive Study (NACCS) to determine the damages to structures for the study area. Surge levels and associated offshore waves used to determine BFEs were obtained from the NACCS hydrodynamic and wave model predictions. The impacts of sea level rise and coastal erosion on flooding were modeled using XBeach and STWAVE and validated by observations at selected locations along the coastline. CERI estimated the structural damage to each structure in the coastal flood plain for 100 yr flooding with SLR ranging from 0 to 10 ft. The number of structures at risk was estimated to increase approximate linearly from 3700 for no SLR to about 8000 for 10 ft SLR, with about equal percentages for each of the four coastal communities (Narragansett, South Kingstown, Charlestown, and Westerly, Rhode Island (RI)). The majority of the structures in the flood plain are single/story residences without (41%) and with (46%) basements (total 87%; structures with basements are the most vulnerable). Less vulnerable are structures elevated on piles with 8.8% of the total. The remaining are commercial structures principally located either in the Port of Galilee and or Watch Hill. The analysis showed that about 20% of the structures in the 100 yr flood plain are estimated to be damaged at 50% or greater. This increases to 55% of structures as SLR rises to 5 ft. At higher SLR values the percent damaged at 50% or greater slowly declines to 45% at 10 ft SLR. This behavior is a result of the number of homes below MSL increasing dramatically as SLR values moves higher than 5 ft and thus being removed from the structures damaged pool. Generalized CERI risk maps have developed to allow the managers to determine the broad risk of siting structures at any location in their communities. CERI has recently become available as a mobile phone App, facilitating the ability of state and local decision makers and the public to determine the risk of locating a selected building type at any location in their communities

    Flood Risk in Past and Future: A Case Study for the Pawtuxet River\u27s Record-breaking March 2010 Flood Event

    Get PDF
    In March 2010, a sequence of three major rainfall events in New England (United States) led to a record‐breaking flooding event in the Pawtuxet River Watershed with a peak flow discharge of about 500‐year return period. After development of hydrological and hydraulic models, a number of factors that played important roles in the impact of this flooding and other extreme events including river structures (reservoirs, historical textile mill dams, and bridges) were investigated. These factors are currently omitted within risk assessments tools such as flood insurance rate maps. Some management strategies that should be considered for future flood risk mitigation were modeled and discussed. Furthermore, to better understand possible future risks in a warmer climate, another extreme flood event was simulated. The synthetic/hypothetical storm (Hurricane Rhody with two landfalls) was created based on the characteristics of the historical hurricanes that severely impacted this region in the past. It was shown that while the first landfall of this hurricane did not lead to significant flood risk, the second landfall could generate more rain and flooding equivalent to a 500‐year event. Results and the methodology of this study can be used to better understand and assess future flood risk in similar watersheds

    Stormtools Design Elevation (SDE) Maps: Including Impact of Sea Level Rise

    Get PDF
    Many coastal communities in the US use base flood elevation (BFE) maps for the 100-year return period, specified on Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs), to design structures and infrastructure. The FIRMs are increasingly known to have serious problems in accurately specifying the risk coastal communities face, as most recently evidenced during hurricanes Harvey and Irma in 2017 and Florence and Michael in 2018. The FIRM BFE maps also do not include the impact of sea level rise, which clearly needs to be considered in the design of coastal structures over the next several decades given recent National Oceanic and Atmospheric Administration (NOAA) sea level rise (SLR) projections. Here, we generate alternative BFE maps (STORMTOOLS Design Elevation (SDE) maps) for coastal waters of Rhode Island (RI) using surge predictions from tropical and extratropical storms of the coupled surge-wave models from the US Army Corp of Engineers, North Atlantic Comprehensive Coast Study (NACCS). Wave predictions are based on application of a steady state, spectral wave model (STWAVE), while impacts of coastal erosion/accretion and changes of geomorphology are modeled using XBeach. The high-resolution application of XBeach to the southern RI shoreline has dramatically increased the ability to represent the details of dune erosion and overtopping and the associated development of surge channels and over-wash fans and the resulting landward impact on inundation and waves. All methods used were consistent with FEMA guidelines for the study area and used FEMA-approved models. Maps were generated for 0, 2 ft (0.6 m), 5 ft (1.5 m), 7 ft (2.1 m), and 10 ft (3.1 m) of sea level rise, reflecting NOAA high estimates at various times for the study area through 2100. Results of the simulations are shown for both the southern RI shoreline (South Coast) and Narragansett Bay, to facilitate communication of projected BFEs to the general public. The maps are hosted on the STORMTOOLS ESRI Hub to facilitate access to the data. They are also now part of the RI Coastal Resources Management Council (CRMC) risk-based permitting system. The user interface allows access to all supporting data including grade elevation, inundation depth, and wave crest heights as well as corresponding FEMA FIRM BFEs and associated zones

    Application of State of the Art Modeling Techniques to Predict Flooding and Waves for a Coastal Area within a Protected Bay

    Get PDF
    Flood Insurance Rate Maps (FIRMs) are developed by the Federal Emergency Management Agency (FEMA) to provide guidance in establishing the risk to structures and infrastructure from storm surge sand associated waves in the coastal zone. The maps are used by state agencies and municipalities to help guide coastal planning and establish the minimum elevation and construction standards for new or substantially improved structures. A summary of the methods used and a comparison with the results of 2013 FIRM mapping are presented for Warwick, Rhode Island (RI), a coastal community located within Narragansett Bay. Because of its location, Warwick is protected from significant coastal erosion and wave attacks, but is subject to surge amplification. Concerns surrounding the FEMA methods used in the 2013 FIRM analysis are put in context with the National Research Council’s (NRC) 2009 review of the FEMA coastal mapping program. New mapping is then performed using state of the art, fully coupled surge and wave modeling, and data analysis methods, to address the NRC concerns. The new maps and methodologies are in compliance with FEMA regulations and guidelines. This new approach makes extensive use of the numerical modeling results from the recent US Army Corp of Engineers, North Atlantic Coast Comprehensive Study (NACCS, 2015). Revised flooding maps are presented and compared to the 2013 FIRM maps, to provide insight into the differences. The new maps highlight the importance of developing better estimates of surge dynamics and the advancement in nearshore mapping of waves in flood inundated areas by the use of state of the art, two-dimensional, wave transformation models

    Validation of Oil Trajectory and Fate Modeling of the Deepwater Horizon Oil Spill

    Get PDF
    Trajectory and fate modeling of the oil released during the Deepwater Horizon blowout was performed for April to September of 2010 using a variety of input data sets, including combinations of seven hydrodynamic and four wind models, to determine the inputs leading to the best agreement with observations and to evaluate their reliability for quantifying exposure of marine resources to floating and subsurface oil. Remote sensing (satellite imagery) data were used to estimate the amount and distribution of floating oil over time for comparison with the model’s predictions. The model-predicted locations and amounts of shoreline oiling were compared to documentation of stranded oil by shoreline assessment teams. Surface floating oil trajectory and distribution was largely wind driven. However, trajectories varied with the hydrodynamic model used as input, and was closest to observations when using specific implementations of the HYbrid Coordinate Ocean Model modeled currents that accounted for both offshore and nearshore currents. Shoreline oiling distributions reflected the paths of the surface oil trajectories and were more accurate when westward flows near the Mississippi Delta were simulated. The modeled movements and amounts of oil floating over time were in good agreement with estimates from interpretation of remote sensing data, indicating initial oil droplet distributions and oil transport and fate processes produced oil distribution results reliable for evaluating environmental exposures in the water column and from floating oil at water surface. The model-estimated daily average water surface area affected by floating oil \u3e1.0 g/m2 was 6,720 km2, within the range of uncertainty for the 11,200 km2 estimate based on remote sensing. Modeled shoreline oiling extended over 2,600 km from the Apalachicola Bay area of Florida to Terrebonne Bay area of Louisiana, comparing well to the estimated 2,100 km oiled based on incomplete shoreline surveys

    STORMTOOLS, Coastal Environmental Risk Index (CERI) Risk and Damage Assessment App

    Get PDF
    STORMTOOLS Coastal Environmental Risk Index (CERI) predicts the coastal flooding damage to individual structures using coastal flooding levels, including the effects of sea level rise (SLR), provided in terms of the base flood elevation (BFE), specifications of the structure of interest (type and first floor elevation) and the associated damage functions from the U.S. Army Corp of Engineers (USACE), North Atlantic Coast Comprehensive Study (NACCS). CERI has been applied to selected coastal communities in Rhode Island, including those in Narragansett Bay and along the southern Rhode Island shoreline. Users can access the results of CERI via ArcGIS online at the CERI website. The objective of this effort was to develop, test, distribute, and evaluate a mobile phone application (App) that allows the user to assess the risk from coastal flooding and the associated damage at the individual structure level using the CERI methodology. The App is publicly available and has been developed for both iOS and Android operating systems. Environmental data to support the App, in terms of 100 y flood BFE maps, including the effects of SLR and the selected site grade elevation, are provided in the application by the URI Environmental Data Center (EDC). The user enters the location and type of the structure of interest (residential number of stories, with or without basement, pile supported or commercial building and the first-floor elevation (FFE)) and the desired SLR. The App then calculates the percent structural damage based on the specified environmental conditions and structure specifications. The App can be applied to any structure at any coastal location within the state. The CERI App development project has been guided by an Advisory Board made up of key constituents involved in coastal management and development in the state. The effort included extensive testing of the App by various user groups. The App structure makes it simple and straightforward to transfer to coastal and inland flooded areas in other locations, requiring only the specification of BFEs and grade elevations

    STORMTOOLS: Coastal Environmental Risk Index (CERI)

    Get PDF
    One of the challenges facing coastal zone managers and municipal planners is the development of an objective, quantitative assessment of the risk to structures, infrastructure, and public safety that coastal communities face from storm surge in the presence of changing climatic conditions, particularly sea level rise and coastal erosion. Here we use state of the art modeling tool (ADCIRC and STWAVE) to predict storm surge and wave, combined with shoreline change maps (erosion), and damage functions to construct a Coastal Environmental Risk Index (CERI). Access to the state emergency data base (E-911) provides information on structure characteristics and the ability to perform analyses for individual structures. CERI has been designed as an on line Geographic Information System (GIS) based tool, and hence is fully compatible with current flooding maps, including those from FEMA. The basic framework and associated GIS methods can be readily applied to any coastal area. The approach can be used by local and state planners to objectively evaluate different policy options for effectiveness and cost/benefit. In this study, CERI is applied to RI two communities; Charlestown representing a typical coastal barrier system directly exposed to ocean waves and high erosion rates, with predominantly low density single family residences and Warwick located within Narragansett Bay, with more limited wave exposure, lower erosion rates, and higher residential housing density. Results of these applications are highlighted herein

    Development and Application of STORMTOOLS Design Load (SDL) Maps

    Get PDF
    Under the STORMTOOLS initiative, maps of the impact of sea level rise (SLR) (0 to 12 ft), nuisance flooding (1–10 yr), 25, 50, and 100 yr storms, and hindcasts of the four top ranked tropical storms have been developed for the coastal waters of Rhode Island (RI). Estimates of the design elevations, expressed in terms of the Base Flood Elevation (BFE) and thus incorporating surge and associated wave conditions, have also been developed, including the effects of SLR to facilitate structural design. Finally, Coastal Environmental Risk Index (CERI) maps have been developed to estimate the risk to individual structures and infrastructure. CERI employs the BFE maps in concert with damage curves for residential and commercial structures to make estimates of damage to individual structures. All maps are available via an ArcGIS Hub. The objective of this senior design capstone project was to develop STORMTOOLS Design Load maps (SDL) with a goal of estimating the hydrostatic, hydrodynamic, wave, and debris loading, based on ASCE/SEI 7–16 Minimum Design Standards methods, on residential structures in the RI coastal floodplain. The resulting maps display the unitized loads and thus can be scaled for any structure of interest. The goal of the maps is to provide environmental loads that support the design of structures, and reduce the time and cost required in performing the design and the permitting process, while also improving the accuracy and consistency of the designs. SDL maps were generated for all loads, including the effects of SLR for a test case: the Watch Hill/Misquamicut Beach, Westerly, along the southern RI coast. The Autodesk Professional Robot Structural Analysis software, along with SDL loading, was used to evaluate the designs for selected on-grade and pile-elevated residential structures. Damage curves were generated for each and shown to be consistent with the US Army Corps of Engineers empirical damage curves currently used in CERI

    Oil fate and mass balance for the Deepwater Horizon oil spill

    Get PDF
    Based on oil fate modeling of the Deepwater Horizon spill through August 2010, during June and July 2010, ~89% of the oil surfaced, ~5% entered (by dissolving or as microdroplets) the deep plume (\u3e900 m), and ~6% dissolved and biodegraded between 900 m and 40 m. Subsea dispersant application reduced surfacing oil by ~7% and evaporation of volatiles by ~26%. By July 2011, of the total oil, ~41% evaporated, ~15% was ashore and in nearshore (\u3c10 m) sediments, ~3% was removed by responders, ~38.4% was in the water column (partially degraded; 29% shallower and 9.4% deeper than 40 m), and ~2.6% sedimented in waters \u3e10 m (including 1.5% after August 2010). Volatile and soluble fractions that did not evaporate biodegraded by the end of August 2010, leaving residual oil to disperse and potentially settle. Model estimates were validated by comparison to field observations of floating oil and atmospheric emissions

    An Adaptive Framework for Selecting Environmental Monitoring Protocols to Support Ocean Renewable Energy Development

    Get PDF
    Offshore renewable energy developments (OREDs) are projected to become common in the United States over the next two decades. There are both a need and an opportunity to guide efforts to identify and track impacts to the marine ecosystem resulting from these installations. A monitoring framework and standardized protocols that can be applied to multiple types of ORED would streamline scientific study, management, and permitting at these sites. We propose an adaptive and reactive framework based on indicators of the likely changes to the marine ecosystem due to ORED. We developed decision trees to identify suites of impacts at two scales (demonstration and commercial) depending on energy (wind, tidal, and wave), structure (e.g., turbine), and foundation type (e.g., monopile). Impacts were categorized by ecosystem component (benthic habitat and resources, fish and fisheries, avian species, marine mammals, and sea turtles) and monitoring objectives were developed for each. We present a case study at a commercial-scale wind farm and develop a monitoring plan for this development that addresses both local and national environmental concerns. In addition, framework has provided a starting point for identifying global research needs and objectives for understanding of the potential effects of ORED on the marine environment
    corecore