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A B S T R A C T   

Based on oil fate modeling of the Deepwater Horizon spill through August 2010, during June and July 2010, 
~89% of the oil surfaced, ~5% entered (by dissolving or as microdroplets) the deep plume (>900 m), and ~6% 
dissolved and biodegraded between 900 m and 40 m. Subsea dispersant application reduced surfacing oil by 
~7% and evaporation of volatiles by ~26%. By July 2011, of the total oil, ~41% evaporated, ~15% was ashore 
and in nearshore (<10 m) sediments, ~3% was removed by responders, ~38.4% was in the water column 
(partially degraded; 29% shallower and 9.4% deeper than 40 m), and ~2.6% sedimented in waters >10 m 
(including 1.5% after August 2010). Volatile and soluble fractions that did not evaporate biodegraded by the end 
of August 2010, leaving residual oil to disperse and potentially settle. Model estimates were validated by 
comparison to field observations of floating oil and atmospheric emissions.   

1. Introduction 

Most modeling studies of the 2010 Deepwater Horizon (DWH) oil 
spill evaluated the oil trajectory or sensitivity to assumed oil droplet 
sizes released to the environment (Mariano et al., 2011; MacFadyen 
et al., 2011; North et al., 2011, 2015; Liu et al., 2011; Le Hénaff et al., 
2012; Dietrich et al., 2012; Paris et al., 2012; Lindo-Atichati et al., 2016; 
Aman et al., 2015; Boufadel et al., 2014; Weisberg et al., 2017; Testa 
et al., 2016; Hole et al., 2019). A few studied gas and oil fate processes in 
the buoyant plume, its intrusion into deep water, the inferred rise to the 
surface, and atmospheric emissions on specific dates (i.e., for 8–10 June 
2010; Ryerson et al., 2011, 2012; Gros et al., 2016, 2017; Cooper et al., 
2021). The present modeling analysis uniquely quantifies and verifies 
the full oil fate and mass balance for the DWH spill over the period from 
the start of spill until the end of August 2010. As gas components (C1–C4 
alkanes) dissolved at depth (Valentine et al., 2010; Kujawinski et al., 
2011; Kessler et al., 2011; Ryerson et al., 2011, 2012; Reddy et al., 2012; 
Gros et al., 2017) and would not contribute much to water column 

toxicity (Paquin et al., 2018), only oil (C5+) fate was modeled as a 
complete mass balance. 

Our results challenge some assertions regarding the fraction of oil 
that remained at depth versus rising to surface waters, and the degree to 
which dispersants affected the fate of the oil. Results of extensive tra-
jectory analyses for the spill are available in French-McCay et al. (2018a, 
2018c, 2021a). The present paper describes the model inputs, assump-
tions and results, quantifying mass balance. The results were validated 
by comparisons to field data related to floating oil and atmospheric 
emissions (discussed herein) and to detailed analyses of chemical 
compositional measurements of samples from >900 m depth, presented 
in a companion paper (French-McCay et al., 2021b). 

2. Methods 

2.1. Oil spill models 

Oil mass balance was evaluated using nearfield buoyant plume and 
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farfield Lagrangian transport and fate models (Fig. 1). In the nearfield, 
the oil and gas release started as a momentum-dominated jet, which 
after a short distance (<1 m; Camilli et al., 2010; Spaulding et al., 2015, 
2017) developed into a turbulent buoyant plume. Integral plume models 
(Rye, 1994; Rye and Brandvik, 1997; Spaulding et al., 2000; Johansen, 
2000, 2003; Yapa et al., 2001; Chen and Yapa, 2002; Zheng et al., 2003; 
Socolofsky and Adams, 2002; Socolofsky et al., 2011, 2015a, 2015b; 
Johansen et al., 2013; Gros et al., 2017; Spaulding et al., 2017) address 
the buoyant plume phase of such a release until it has entrained suffi-
cient seawater to reach a neutrally buoyant “trap height”, forming an 
intrusion in the water column, or until the plume has breached the water 
surface. RPS's (RPS Group Plc) integrated plume model OILMAP DEEP 
(OIL Model Application Package for DEEP water releases; Spaulding 
et al., 2000; Crowley et al., 2014; Spaulding et al., 2015, 2017) was used 
herein to predict the characteristics of the buoyant plume, including the 
trap height at the center of the intrusion layer. 

In oil and gas blowouts such as DWH, the initial breakup into gas 
bubbles and liquid droplets occurs in the buoyant plume and is simu-
lated by gas and droplet size distribution (DSD) models (e.g., Chen and 
Yapa, 2007; Bandara and Yapa, 2011; Johansen et al., 2013; Zhao et al., 
2014a, 2014b, 2015, 2017a; Nissanka and Yapa, 2016; Li et al., 2017a; 
Spaulding et al., 2017; Boufadel et al., 2020; Cooper et al., 2021). The 
gas bubble size distribution influences the rise rate of the buoyant 
plume, which decreases due to gas dissolution and escapement of gas 
bubbles from the plume. The DSD was estimated using the Li et al. 
(2017a, 2017b) model, as described by Spaulding et al. (2015, 2017), 
accounting for the reduction of oil droplet sizes with application of 
dispersants (Chan et al., 2015). Oil droplets were released from the 
intrusion into the farfield environment where their further movements 
were governed by ambient currents, turbulence, and their individual 
buoyancy. The physical/chemical changes (i.e., weathering) of the oil 
droplets, and their movements (with buoyancy affected by weathering), 
were tracked by the farfield model. Recent analyses by Boufadel et al. 
(2020) support this approach, where particle transport above the initial 
intrusion of a multiphase plume in stratified water column is modeled as 
passive Lagrangian transport. 

The 3-dimensional oil spill transport and fate model SIMAP (Spill 
Impact Model Application Package; French-McCay, 2003, 2004; French- 
McCay et al., 2004, 2015a, 2018b) was used to evaluate the farfield fate 
and mass balance of the DWH oil (C5+). As oil is a mixture of thousands 
of compounds, they were grouped by similar physical-chemical prop-
erties into “pseudo-components”, where each behaved as if a single 
chemical with characteristics typical of the group (Payne et al., 1984; 
Kirstein et al., 1987). As in recent model applications (French-McCay 
et al., 2015a, 2016, 2018a, 2018b, 2018c, 2018d, 2019), compounds 
were binned into 18 pseudo-components: nine volatile soluble and semi- 
soluble (S&SS), eight volatile insoluble, and residual oil (defined in 
Table A-1, Appendix A, Supporting Information [SI]). The S&SS pseudo- 
components included monoaromatic hydrocarbons (MAHs, such as 
benzene, toluene, ethylbenzene and xylene; BTEX), polycyclic aromatic 
compounds (PACs, which include polycyclic aromatic hydrocarbons, 
PAHs, and related heterocyclic compounds that contain S, N, or O), and 
soluble alkanes. The model tracked these pseudo-components in droplet 
and dissolved phases of the water column, sediments, floating oil, and 
shorelines. Weathering and transport processes modeled included 
spreading (gravitational and by shearing), evaporation of 17 volatile 
pseudo-components from surface oil, transport on the surface and in the 
water column from ocean currents, dispersion from small-scale motions 
(mixing), emulsification, entrainment of oil as droplets into the water 
(natural and facilitated by surface dispersant application), dissolution of 
the 9 S&SS pseudo-components, volatilization of dissolved compounds 
from the surface wave-mixed layer, adherence of oil droplets to sus-
pended particulate matter (SPM), adsorption of S&SS compounds to 
SPM, sedimentation, stranding on shorelines, and degradation (pseudo- 
component-specific biodegradation and photo-oxidation). Appendix A 
(SI) contains a summary of the model algorithms and assumptions; 
detailed descriptions are provided in French-McCay et al. (2018b, 
2018c). 

2.2. Prior modeling studies of DWH oil spill by the authors 

OILMAP DEEP (Spaulding et al., 2015, 2017; Appendix B [SI]) and 

Fig. 1. Conceptual model of the buoyant plume, rising oil droplets, and far field transport and fate.  
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SIMAP (French-McCay et al., 2015a, 2015b, 2015c, 2015d, 2015e, 
2016) were used to evaluate the DWH oil spill in support of the Natural 
Resource Damage Assessment (NRDA) by the DWH Trustees (2016). 
Simplifying assumptions regarding transport were used to estimate ex-
posures to aquatic biota below 20 m (depth of surface mixed layer) and 
within a 25 km by 25 km box surrounding the wellhead (French-McCay 
et al., 2015a, 2016). French-McCay et al. (2015a, 2016, 2018a, 2018c) 
showed that model-predicted concentrations of S&SS components below 
20 m and within 10–15 km of the wellhead agreed in magnitude with 
measured concentrations from field samples. 

French-McCay et al. (2018a, 2018c, 2021a) describe additional an-
alyses and modeling of the DWH spill through examination of transport 
and oil distributions. Those results were compared to remote sensing- 
based observations of floating oil, shoreline oiling distributions from 
surveys, fluorescence and other sensor data indicating the path of the 
deep plume/intrusion layer, and chemistry sample data. Several model 
inputs were varied to quantify uncertainty and determine which pro-
vided the best fit to observations, including currents from seven different 
hydrodynamic models and measurements by Acoustic Doppler Current 
Profilers (ADCPs), winds from four meteorological models, horizontal 
turbulent dispersion coefficients, and surface oil wind drift. The mass 
balance calculated with SIMAP was not sensitive to the wind and current 
data set used as input (except for the amount coming ashore versus 
entrained in the water column, due to differential transport in nearshore 
areas), or to the assumed dispersion coefficients or wind drift assump-
tions. The direction and speed of transport in the offshore environment 
did not greatly affect the fate processes and so did not significantly affect 
the mass balance. Thus, comparison of the model and observed trajec-
tories are not reviewed here, but are provided in French-McCay et al. 
(2015a, 2018a, 2018c, 2021a). Based on these model simulations, one 
set of forcing data, that which led to the best fit with the observations 
overall (described in Section 2.6), was used for the model simulations 
examined herein. 

2.3. Release locations and volumes 

The spill location (Fig. C-2, Appendix C, SI) was ~80 km southeast of 
the mouth of the Mississippi River in ~1500 m of water (in Mississippi 
Canyon Block 252, MC252). The daily release rates of oil to the envi-
ronment (totaling 4.127 million bbl; ~656,000 m3; ~554,000 metric 
tons, MT; i.e., not including the amount recovered at the release site; 
Lehr et al., 2010; McNutt et al., 2012a) and associated daily-specific 
DSDs were input to SIMAP from 22 April 2010 for 84 days (until 15 
July 2010; Sections B.2, B.3.1, Appendix B, SI). From April 28 to June 3, 
oil and gas flowed from both the broken end of the fallen riser and holes 
in a kink in the riser pipe just above the blowout preventor (BOP). After 
June 3, oil was released only from the riser pipe and around the top hat 
immediately above the BOP. The droplet diameters from the riser flows 
(~2–3 mm) were significantly larger than those from the kink hole flows 
(~300–500 μm), due to the much higher exit velocity from the kink 
holes relative to the larger diameter riser. 

2.4. Nearfield modeling 

As described in Spaulding et al. (2015, 2017; summarized in Section 
B.3, Appendix B, SI), OILMAP DEEP was used to estimate the trap height 
(s) on each day of the release. The DSDs were estimated for each day of 
release based on oil and gas flow rates from each source (kink holes and 
end of the riser), the turbulent energy in the discharge plumes, and oil 
properties, considering the daily-varying dispersant volumes used for 
subsea dispersant injection (SSDI; Spaulding et al., 2015, 2017; Li et al., 
2017a). Dispersants were applied at the outer edge of the discharge 
plume from the end of the riser via a single wand or multipronged 
trident. The analysis explicitly considered the presence of the top hat 
placed on June 3 over the cut riser to collect oil from the well. The oil 
mass, DSD, and trap depth for each day were used as input to SIMAP to 

simulate the oil fate in the farfield. 
Spaulding et al. (2015, 2017) evaluated three dispersant-treatment 

case assumptions. One was considered the most realistic, while the 
others bounded the range of DSDs that could have been released at the 
trap height, based on the uncertainties of the model assumptions:  

• Bimodal Partial-Treatment Base Case (most realistic): Before the 
riser was cut on June 3, dispersants were applied by a single wand to 
part (estimated as 8.1%) of the plume flow from the end of the fallen 
riser. After June 3, ~30% of the oil and gas plume was treated (much 
of the time using a multipronged trident) as it escaped recovery at 
the outer edge of the top hat. The dispersant (contact) effectiveness 
with the liquid oil in the treated fraction was estimated as 80% (i.e., 
yielding 6.5% effectively treated before June 3, and 24% after). The 
partial treatment of the riser release led to a bimodal distribution of 
droplet sizes, with a peak of smaller droplets representing the treated 
fraction and the peak of larger droplets representing untreated oil.  

• High Dispersant Effectiveness Case: Dispersants were assumed to 
completely mix in the plume flow with 100% effectiveness (appli-
cation to the liquid oil phase), i.e., the maximum possible effec-
tiveness, bounding the problem.  

• Low Dispersant Effectiveness Case: Dispersants were assumed to 
completely mix in the plume flow with 50% effectiveness (i.e., low 
end estimate with only 50% of the dispersant assumed to treat the 
liquid oil in the buoyant plume). 

The modeled DSD varied daily, based on release conditions, flow rate 
and dispersant quantity applied each day. Prior to June 3, the releases 
through the kink holes (which were not treated with dispersant) 
generated small droplet sizes (<1 mm) due to high exit velocities and 
resulting turbulence. The assumptions for the bimodal partial-treatment 
model for the riser flows were derived from an in-depth analysis of 
remotely operated vehicle (ROV) videos of the release and SSDI treat-
ments (see Appendices of Spaulding et al., 2015 and Section B.3, Ap-
pendix B, SI). In May, a single-wand applicator was held next to the 
buoyant plume from the riser and the dispersant entrained into the side 
of the plume. Post riser cut, after June 3, Top Hat #4 placed over the cut 
riser had an attached pipe leading to the surface, through which some of 
the oil and gas mixture was recovered. In addition to rising through the 
pipe, the oil and gas plume flowed through the annulus-shaped gap 
between the top hat and the cut riser, flowing around the top hat and 
upwards surrounding the recovery pipe. Thus, after June 3, the buoyant 
plume surrounded the pipe and was not a simple continuous plume. 
Rather, limited mixing occurred around the circumference of the plume 
that encompassed the pipe. This is one of the factors Spaulding et al. 
(2015, 2017) considered, along with the video of the release and 
dispersant treatment techniques, that indicated partial treatment of the 
plume by the dispersant application, such that treated oil was in smaller 
droplet sizes than the untreated oil, which together formed a bimodal 
DSD. (See Spaulding et al., 2015, 2017 for details). The assumptions 
used to apply the Li et al. (2017a) DSD model to the three above cases 
are in Section B.3.2, Appendix B (SI). 

Calculations of daily-varying trap heights, dispersant-to-oil ratios, 
and resulting DSDs by source (kink holes or riser) are unique to this 
modeling effort. No other modeling study has considered these impor-
tant sources of variation. Other published models have assumed a single 
source point, complete mixing of the dispersant into the plume, and 
constant oil and gas release rates either for the entire spill (e.g., Paris 
et al., 2012; Perlin et al., 2020) or focusing on the early June 2010 
conditions (Zhao et al., 2015; Gros et al., 2017; Boufadel et al., 2018; 
Cooper et al., 2021). (See further discussion in Section B.3.4, Appendix 
B, SI). 

2.5. Oil properties and composition 

The bulk properties of the oil released to the farfield were measured 
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by Stout (2015b) using oil collected on 21 May 2010 from the riser 
insertion tube that was receiving oil and gas directly from the well's 
broken riser near the sea floor. Concentrations of S&SS compounds 
(from Stout, 2015a; Stout et al., 2016a) were very similar to those 
measured by Reddy et al. (2012) for a sample taken just above the 
wellhead on 21 June 2010. It was assumed that aqueous dissolution of 
the C5+ compounds within the buoyant plume was negligible, since the 
rise time to the trap height was ~15–20 min. For the SIMAP simulations, 
each of the modeled pseudo-components (C5+) were assigned initial 
concentrations in the oil phase and physical-chemical properties (Sec-
tion B.1, Appendix B, SI), as well as empirically based photo- and 
biodegradation rates (Section C.1.8, Appendix C, SI), which were mass- 
weighted means of rates for the individual compounds. 

2.6. Environmental data inputs 

Spatially varying data defining bathymetry, shore/habitat types, 
currents, winds, SPM concentrations, water temperature and salinity, 
and horizontal and vertical diffusion coefficients are described in Sec-
tion C.1, Appendix C (SI). Currents from the HYbrid Coordinate Ocean 
Model (HYCOM) simulation, implemented by Florida State University 
(FSU; Chassignet and Srinivasan, 2015), yielded the best overall tra-
jectory of the seven hydrodynamic models tested (French-McCay et al., 
2018a, 2018c, 2021a). Data from 18 ADCPs at 17 stations (including 
three within 8 km of the release locations, and all at depths greater than 
40 m) were interpolated to develop three-dimensional and time-varying 
current fields using an inverse distance-weighted scheme. ADCP-based 
trajectories more closely agreed with subsurface oil observations than 
the HYCOM-FSU simulation (French-McCay et al., 2018a, 2018c) or any 
of the other hydrodynamic model results considered. Thus, we present 
here the mass balance and related results of the SIMAP simulations run 
with a combination of ADCP currents below 40 m and HYCOM-FSU 
currents in waters above 40 m. Wind data were obtained from the Na-
tional Oceanic and Atmospheric Administration (NOAA) National Cen-
ter for Environmental Prediction (NCEP) North American Regional 
Reanalysis (NARR) model, the same as used to force the HYCOM-FSU 
model. 

While Marine Oil Snow Sedimentation and Flocculent Accumulation 
(MOSSFA; Passow et al., 2012; Fu et al., 2014; Ziervogel et al., 2014; 
Joye et al., 2014; Chanton et al., 2015; Brooks et al., 2015; Passow, 
2016; Passow and Ziervogel, 2016; Quigg et al., 2016; Daly et al., 2016; 
Stout et al., 2016b, 2017; Romero et al., 2015, 2017; Babcock-Adams 
et al., 2017; Burd et al., 2020) was recognized as an oil pathway, spill- 
wide quantitative estimates of organic particulate concentrations due 
to microbial and phytoplankton growth, exudates, and marine oil snow 
formation were not available, and so oil sedimentation by this process 
was not included in the simulations. Additionally, sinking residues from 
surface oil (in situ) burns and oil sedimentation by suspended sediment 
and other materials discharged as part of top-kill operations (26–28 May 
2010; USDC, 2015; Stout and Payne, 2016b, 2017) were not modeled. 
However, estimates were made of sedimentation via MOSSFA and 
included in the final mass budget for the spill. 

2.7. Surface response 

Modeled response activities at the water surface included removal by 
in situ burning (ISB) and dispersant application onto floating oil from 
the air and surface vessels. Spatially explicit quantitative measurements 
of oil volume mechanically removed were not available, but likely 
accounted for a small percentage of the spilled oil (see Section 3.3.1). 
Therefore, mechanical cleanup was not included in the simulations. 
Polygons identifying the locations, timing, and amounts of dispersant- 
treated surface oil were input to the model to specify response activ-
ities. The sources of these data, as well as model assumptions about the 
efficacy, acceptable weather conditions, and other response constraints, 
are provided in Section C.1.10, Appendix C (SI). 

2.8. Remote sensing data 

Satellite imagery on 84 dates was judged sufficiently synoptic of the 
area of the floating oil, including 34 Synthetic Aperture Radar (SAR), 18 
Moderate Resolution Imaging Spectroradiometer (MODIS) Visible 
(MVIS), 25 MODIS Thermal IR (infrared) sensor (MTIR) and 7 Landsat 
Thematic Mapper (TM) images, available from ERMA (2016). Remote 
sensing (overflight and satellite imagery) data were used to: (1) indicate 
where oil surfaced (useful for evaluating the modeled DSD), (2) evaluate 
the distribution of surface oil, and (3) compare volume of floating oil 
(using estimates of average oil thickness) with model predictions. 
Methods are described in Section C.2, Appendix C (SI). 

3. Results and discussion 

3.1. Nearfield modeling 

3.1.1. Trap height 
Based on the nearfield model analyses (performed for each day of 

release), the kink releases trapped at 1280–1310 m, whereas the (larger 
flow rate) releases from the riser trapped at 1150–1220 m (Spaulding 
et al., 2015; Section B.3.1.1, Appendix B, SI). The rise times to the trap 
heights were ~15–20 min. Fluorescence and dissolved oxygen anoma-
lies, and chemical concentration measurements, during 2010 (Camilli 
et al., 2010; Diercks et al., 2010; Valentine et al., 2010; Reddy et al., 
2012; Spier et al., 2013; Horn et al., 2015; French-McCay et al., 2015a; 
Payne and Driskell, 2015b, 2016, 2017, 2018; Driskell and Payne, 
2018a, 2018b), as well as model calculations by Socolofsky et al. (2011), 
indicate that a considerable portion of the buoyant plume trapped at 
~1200 m depth. Observations of secondary peaks were centered at 
~1300 m. Thus, the model-predicted trap heights are consistent with the 
field evidence and other analyses (Spaulding et al., 2015, 2017). 

3.1.2. Droplet sizes 
Modeled oil fate is sensitive to the DSD of the released oil (Chen and 

Yapa, 2002, 2007; French-McCay, 2008; North et al., 2015; French- 
McCay et al., 2015a, 2019; Daae et al., 2018). Based on Spaulding et al.'s 
(2015, 2017) application of the DSD model (Li et al., 2017a), the volume 
mean diameter (VMD, of a logarithmic distribution, with standard de-
viation 0.5 based on experimental data) of untreated oil droplets was 
2.7–3.0 mm in April–May and 2.5–2.6 mm in June–July. The subsea 
dispersant application rates, and the resulting dispersant-to-oil ratios, 
varied over time, becoming more consistent after the riser was cut on 
June 3 (Figs. B-8 to B-12, Appendix B, SI). During June, the VMD of the 
dispersant-treated oil (assuming complete mixing of the dispersant 
within the plume) was ~400 μm for the high treatment case and ~1130 
μm for the low treatment case. The VMD during June for the 24% of the 
oil treated in the bimodal case was ~160 μm, while untreated oil 
amounted to 76% of the released oil. The modeled DSDs (which varied 
daily) and discussion of uncertainties are provided in Section B.3.2 (Figs. 
B-4 to B-7, Appendix B, SI). 

Multiple observations of the locations and timing of surfacing oil 
during the DWH spill confirm that a substantial portion of the released 
oil mass was in the form of large droplets, >1 mm in diameter, even 
while SSDI proceeded. Ryerson et al. (2012), Reddy et al. (2012), Spier 
et al. (2013), Payne and Driskell (2015b, 2015d, 2018), Svejkovsky and 
Hess (2012), and Svejkovsky et al. (2016) observed that a significant 
amount of oil reached the surface within 3–12 h (Section C.3.1, Ap-
pendix C, SI). The freshest oil observed to surface was collected 2 km 
from the wellhead (Stout et al., 2016a). Based on the temporally and 
vertically averaged current velocities of ~4 cm/s at ADCP station 
#42916 near the wellhead (French-McCay et al., 2015a), and account-
ing for weathering and the vertical water density gradient, 1.0 and 0.7 
mm droplets surfaced 1.5 to 2.4 km from the wellhead, 11 to 17 h after 
release. Assuming the vertically averaged current speed (~7 cm/s, 
Spaulding et al., 2015) as unidirectional, to bound the expected 
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surfacing distance, a 0.7-mm droplet would surface 4.3 km from the well 
(Figs. C-7 and C-8, Appendix C, SI). Thus, the large amounts of oil 
observed to be surfacing within 4 km of the well were derived from >0.7 
mm droplets. 

Assuming average currents, 300 and 150 μm droplets rose to 900 m 
depth in 16 and 73 h, at ~2 km and ~10 km from the well, respectively 
(Fig. C-7, Appendix C). C1–C11 compounds dissolved rapidly from these 
small droplets (Ryerson et al., 2012; Gros et al., 2017), shrinking to 291 
and 137 μm in diameter, respectively, based on model predictions (Fig. 
C-9, Appendix C). Thus, oil droplets >900 m below the surface and 2–10 
km from the well were initially <300 μm, and those >10 km from the 
well were initially <140 μm. Payne and Driskell (2015a, 2015b, 2015c, 
2015d, 2016, 2018) found that there was particulate oil in small droplets 
(<300 μm) in the deep plume when subsea dispersants were applied, as 
filtered samples had substantial concentrations of dispersant indicators 
(glycol ethers) and non-soluble alkanes, plus extensively water-washed 
losses of lower-alkylated homologues within each PAC group. Visible 
oil fog and rising oil droplets were documented in ROV imagery taken at 
mid-depths (Payne and Driskell, 2015b, 2017; Li et al., 2015, 2017a). 
Holographic image analysis (Davis and Loomis, 2014; Li et al., 2015, 
2017a) demonstrated measurable numbers of 70–250 μm droplets at 
700–1200 m below the surface 1.2–2.1 km from the wellhead, which 
were at concentrations in agreement with chemistry sample measure-
ments at the same stations (see Section C.3.1, Appendix C). 

Based on the bimodal DSD for the release during June 8–10 
(Spaulding et al., 2015, 2017), ~79% of the oil was in droplets with 
diameters >300 μm, which would have surfaced within 10 km from the 
well. Gros et al. (2017) using VDROP-J predicted that, during June 
2010, 0.1%, 1.3%, and 98.6% of the oil was in <130 μm, 130–300 μm, 
and >300 μm droplets, respectively. However, in modeling their DSD 
Gros et al. (2017) did not consider the details of the dispersant treatment 
approach and its effectiveness (via single wand on June 8) and the fact 
that the oil was being released at the outer edge of the top hat. Based on 
their comparisons to deep-plume sample chemistry and model calibra-
tion, Gros et al. (2017) concluded that ~1.2% of the C10+ was retained 
in the deep-water intrusion as microdroplets <130 μm in diameter, 
modifying their DSD accordingly, such that 97.5% of the (oil) mass was 
>300 μm. Spaulding et al.'s bimodal model estimate for 8 June 2010 was 
that ~8% of the oil (C5+) was released as <130 μm microdroplets. 

Models assuming a single DSD (e.g., Spaulding et al. (2015, 2017) 
dispersant effectiveness assumption extremes of 0.4–1.1 mm VMD; Gros 
et al. (2017) VDROP-J estimate with 1.3 mm VMD (and no added 
microdroplets); and SINTEF model with 1.8 mm VMD (NASEM, 2020)) 
did not account for enough mass in microdroplets to be consistent with 
the composition of PACs in chemistry samples taken >900 m (see also 
French-McCay et al., 2021b). Model scenarios using DSDs assuming a 
release of most or all of the oil mass in microdroplets with VMD < 130 
μm (Paris et al., 2012; Lindo-Atichati et al., 2016; Aman et al., 2015; 
Perlin et al., 2020; Bracco et al., 2020)) predicted either no oil or 
negligible amounts of oil surfacing near the wellhead, which is not in 
accordance with observations of large amounts of surfacing oil near the 
wellhead (e.g., Ryerson et al., 2012; Reddy et al., 2012; Spier et al., 
2013; Payne and Driskell 2015b, 2018) and large droplet sizes subsea 
(Payne and Driskell, 2015b; Li et al., 2015), nor is it consistent with the 
physical-chemical conditions of the release (Adams et al., 2013; Gros 
et al., 2017, 2020; NASEM, 2020; Cooper et al., 2021; see discussion in 
Section B.3.4, SI and in French-McCay et al., 2021b). Thus, the 
Spaulding et al. (2015, 2017) bimodal DSD, assuming partial treatment 
by SSDI, is most consistent with observations and was assumed for the 
base case in the farfield modeling. 

3.2. Farfield trajectory 

The uncertainties in the spatial-temporal distributions of oil, which 
arise from those in wind and ocean current model data used for forcing, 
are evident when comparing among published oil spill model 

trajectories for DWH (Adcroft et al., 2010; MacFadyen et al., 2011; Liu 
et al., 2011; Mariano et al., 2011; Dietrich et al., 2012; Le Hénaff et al., 
2012; Kourafalou and Androulidakis, 2013; Jolliff et al., 2014; Boufadel 
et al., 2014; Goni et al., 2015; North et al., 2011, 2015; Testa et al., 2016; 
Özgökmen et al., 2016; Weisberg et al., 2017; French-McCay et al., 
2018a, 2018c, 2021a). In comparing our model results (French-McCay 
et al., 2018a, 2018c, 2021a) to surfacing oil locations, remote sensing- 
based observations (SAR, MVIS, MTIR, and Landsat TM), shoreline oil-
ing distributions, fluorescence and other sensor data, and chemistry 
sample measurements, the best overall fit was found using interpolated 
ADCP data in subsurface waters (>40 m) and HYCOM-FSU currents in 
surface waters (i.e. the base case). The trajectory results for these and 
other environmental inputs are provided in French-McCay et al. (2015a, 
2018a, 2018c, 2021a). 

French-McCay et al. (2021a) summarize the floating, shoreline and 
sediment oil exposure for the base-case model. The predicted number of 
days of oil cover was found to be in the same range and in similar areas 
as estimated by the DWH Trustees (2016) based on remote sensing im-
agery (Graettinger et al., 2015). The shoreline distribution was along the 
same coastlines identified as oiled by responders (OSAT-2, 2011) and 
the DWH Trustees (2016; Nixon et al., 2016). The model predicted oil 
sedimentation in the offshore area surrounding the well site where 
MC252 oil was identified in the sediments (Joye et al., 2011; Montagna 
et al., 2013; Valentine et al., 2014; Stout and Payne, 2016a; Stout et al., 
2016b; Romero et al., 2015), as well as in nearshore areas of Louisiana to 
the panhandle of Florida, where oil was measured in sediment samples 
(OSAT, 2011). 

3.3. Mass balance 

3.3.1. Model results 
Figs. 2 and 3 show the mass balance of the (C5+) oil (as percentage 

released to date and as mass) by environmental compartment, for the 
base case using the Spaulding et al. (2015, 2017) bimodal DSD as input. 
Figs. C-10 and C-11 show the results (as mass) for the bounding low and 
high effectiveness DSDs, and Figs. C-12 and C-13 (Appendix C) show 
how the mass balance would have differed if no subsea dispersant was 
used, with and without burning and surface dispersant applications 
included. While the differences in the floating and shoreline oil amounts 
are subtle, the simulations including effective SSDI resulted in consid-
erably more biodegradation in subsurface waters (facilitated by smaller 
droplets and therefore faster dissolution rates with SSDI) and less 
volatilization to the atmosphere, particularly in June–July 2010. The 
effectiveness of SSDI each day varied, and was limited by ability to mix 
with the escaping oil and the volumes of dispersants applied, such that 
the resulting dispersant concentrations in the treated oil were typically 
<1% (<1:100; Fig. B-3, Appendix B). 

Because the discharged oil had a high volatile content, much of the 
surfaced oil evaporated. Oil in the water column included small droplets 
dispersed at depth, oil droplets entrained by waves from the surface, and 
dissolved soluble components. Degradation rates were fastest for oil 
components within the water column; thus, the degraded fractions that 
accumulated over the simulations were mainly in the water column. A 
small percentage of water column oil mass settled (see Section 3.3.3), 
while most mass remained in the water column and biodegraded over 
time. 

Table 1 summarizes the mass balance on 31 August 2010 for model 
cases varying dispersant-treatment assumptions. (Appendix C.3.3, SI, 
contains further detail.) By August 31, <0.1% of the oil remained 
floating, evaporation was complete, and most of the oil that was to reach 
shorelines had done so. Oil components moving out of the model domain 
were in the water column and would have continued to biodegrade 
(with a portion settling) had the simulations continued past the end of 
August. Thus, in Table 1, the sum of the percentages in the water col-
umn, degraded, and out of the domain represents the mass percentage 
that ultimately degraded in the water column or settled after August 31. 
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In Fig. 2, the out-of-domain mass (~4% on August 31, for the base case) 
was combined with the degraded pool for simplicity. Varying the 
assumed DSD over the bounding range (i.e., low and high effectiveness 
SSDI assumptions) affected the mass balance by about ±10% of the base 
case (Table 1). The simulations run without SSDI (Fig. C-12, Appendix 
C), resulted in higher floating oil exposure, more oil ashore, more 
volatilized, and less oil degraded than the base case simulation including 
SSDI (Table 1). 

The best estimates of the oil amounts retained in the water column 
(without first surfacing) were ~5% below 900 m, ~5% within 900–200 
m, and 1% within 200–40 m (40 m being the approximate depth of the 
surface mixed layer; uncertainty ranges in Table 2). Oil and components 
retained below 40 m biodegraded in the water column (most of the 
mass) or settled to the sediments. 

An estimated 89.3% of the oil surfaced (Table 2), and of that, 46% 
evaporated, 17% came ashore, 3% was removed by ISB, and 34% re- 
entrained into surface waters by natural and dispersant-facilitated 

dispersion. Of the surfaced oil that did not evaporate, which would be 
considered “actionable oil” by the responders, 6.3% was burned. By the 
end of August, of the total spilled oil, ~41% evaporated, ~15% came 
ashore, ~2.7% was removed by ISB, and 41% was either in the water 
column, degraded or in the sediments (30% shallower than 40 m and 
11% below 40 m). 

Without inclusion of SSDI in the model, ~96.4% of the oil surfaced 
(Table 2). Since in the base case during May–July, the fraction of oil 
remaining subsea averaged 11% (range 8–13%), SSDI reduced the 
amount of oil surfacing by 7% on average. Overall, SSDI reduced the 
total mass of volatiles (C5–C10) evaporating by ~13%. Application of 
dispersant at the water surface dispersed ~3.7% of the released oil into 
the water column. Modeled without surface dispersant application and 
ISB, about 2% more of the oil either went ashore or evaporated, and 
about 1% less degraded by the end of August 2010 (Table 1). 

In the base case model, ~15,000 MT (2.7%) of the spilled oil mass 
was removed by ISB. This estimate is about one third of the estimate 

Fig. 2. Mass balance (percentage of discharge to date) in environmental compartments for the base case, assuming the bimodal droplet size distribution.  

Fig. 3. Mass balance (metric tons) in environmental compartments for the base case assuming the bimodal droplet size distribution.  

D.P. French-McCay et al.                                                                                                                                                                                                                     



Marine Pollution Bulletin 171 (2021) 112681

7

made by Mabile and Allen (2010), based on observed burn areas, burn 
times and an assumed 3 mm/min burn rate. The model predicted that 
there was insufficient oil thicker than the assumed minimum threshold 
(based on collection booming) to meet the Mabile and Allen burn vol-
ume estimates on all burn dates. 

Mechanical removal was not simulated because quantitative esti-
mates of the amounts of oil removed by location and over time were not 
available. Lehr et al. (2010) estimated that a total of about 2–5% of the 
spilled oil was skimmed, assuming 10–40% of recovered liquids were 
oil. As burning was limited by the amount of thick floating oil while 
environmental conditions were appropriate, inclusion of mechanical 
removal in the model would also have been limited during the same time 
periods, such that total removal (burning plus mechanical) would have 
been approximately the same as the modeled removal by burning. 

Table C-8 (Appendix C) provides the mass balance of the oil pseudo- 

components on 31 August 2010 for the model simulation assuming the 
Spaulding et al. bimodal DSD. The results (summarized in Table 3) were 
that the Volatile Organic Compounds (VOCs: C5-C10 hydrocarbons, i.e., 
MAHs including BTEX, soluble alkanes and other aliphatics with boiling 
points <180 ◦C) mostly evaporated from surfaced oil, with the 
remaining mass dissolving prior to oil surfacing and then biodegrading 
in the water column. Table 4 shows that 80% of benzene was dissolved 
in the water column, and only 20% evaporated; whereas less soluble 
VOCs ranged up to 21% dissolved and 79% evaporated. By way of 
comparison, during the 1979 IXTOC I blowout in 60 m of water, Payne 
et al. (1980) also observed that the majority of the benzene released with 
the oil dissolved, with the other volatile aromatics and aliphatics vola-
tilizing from the water or the oil phase after reaching the water surface. 
About 55% of the semi-volatile PACs evaporated, while most of the 
remaining PACs dissolved and ultimately degraded in the water column 
(Table 3). The percentages of the released oil pseudo-components 
retained below 40 m are in Table C-9 (Appendix C, SI), and the VOC 

Table 1 
Modeled mass balance of total oil (C5+) on 31 August 2010, as percent of total oil spilled, for simulations assuming the potential range of initial droplet size dis-
tributions and for a simulation assuming no SSDI was performed.  

Modeled droplet size distribution % 
Atmosphere 

% 
Surface 

% 
Burned 

% 
Ashore 

% 
Sediment 

% Water 
column 

% 
Degraded 

% Out of 
domaina 

% Water column + % 
degraded + % out of 
domain 

Spaulding et al. (2017) bimodal 
(base case)b  

41.4  0.02  2.7  15.4  0.40  5.4  31.0  4.0  40.4 

Spaulding et al. (2017) assuming 
low dispersant effectivenessb  

44.5  0.03  2.6  16.4  0.51  5.2  26.9  4.1  36.2 

Spaulding et al. (2017) assuming 
high dispersant effectivenessb  

39.5  0.02  2.7  15.6  0.40  5.8  32.3  3.9  42.0 

Spaulding et al. (2017) assuming 
no SSDIc  

45.0  0.02  2.6  16.2  0.39  5.4  26.5  4.2  36.1 

Spaulding et al. (2017) assuming 
no dispersant and no burningd  

45.8  0.05  0.0  18.6  0.36  6.09  25.2  4.3  35.6  

a Oil and components moving out of the model grid (“out of domain”) were in the water column and would eventually biodegrade. 
b Removal by in situ burning and surface dispersant included in model. 
c Assuming no SSDI, but removal by in situ burning and surface dispersant activities included in model. 
d Assuming no SSDI, and removal by in situ burning and surface dispersant were not included in model. 

Table 2 
Modeled percentage of total oil (C5+) mass remaining below the indicated water 
depths and ultimately biodegrading in the water column or reaching the sedi-
ments, for simulations assuming various daily-varying initial droplet size dis-
tributions from Spaulding et al. (2015, 2017).  

Modeled droplet 
size distribution 

% Below 
900 m 

% Below 
200 m 

% Below 
40 m 

% 200 
m–900 m 

% 40 
m–200 m 

Bimodal (base 
case)  

5.3  10.0  10.7  4.7  0.7 

Assuming low 
dispersant 
effectiveness  

2.1  4.8  5.3  2.7  0.5 

Assuming high 
dispersant 
effectiveness  

5.8  12.3  13.3  7.3  1.0 

Assuming no 
subsea 
dispersant  

1.4  3.3  3.6  2.2  0.3  

Table 3 
Modeled mass balance on 31 August 2010, as percentage of spilled mass for groups of pseudo-components and for total oil (C5+), for the base case using the bimodal 
droplet size distribution from Spaulding et al. (2017).  

Pseudo-components % Atmosphere % Surface % Burned % Ashore % Sediment % Water column % Degraded Out of domain 

BTEX (AR1)  48.4  0.000  0.0  0.0  0.0  0.00  51.6  0.00 
MAHs (AR2 + AR3)  73.4  0.000  0.0  0.0  0.0  0.00  26.6  0.00 
PACs (PAHs & cyclic aromatics)  55.2  0.000  0.1  0.7  0.2  0.07  43.8  0.17 
Aliphatics: C5–C10 (AR9 + AL1 + AL2)  81.3  0.000  0.0  0.0  0.0  0.00  18.7  0.00 
Aliphatics: C11–C16 (AL3 + AL4 + AL5)  70.2  0.000  0.2  0.0  0.0  0.30  28.9  0.35 
Aliphatics: C17–C23 (AL6 + AL7 + AL8)  53.0  0.004  1.5  4.6  0.1  1.50  37.5  2.14 
Residual (C24+)  0  0.057  6.2  37.3  0.9  13.10  34.1  9.01 
Total VOCs (AR1 + AR2 + AR9 + AL1 + AL2)  78.2  0.000  0.0  0.0  0.0  0.00  21.8  0.00  

Table 4 
Modeled percentage of spilled VOC mass dissolving below the indicated water 
depths and ultimately biodegrading in the water column, or surfacing and 
evaporating, assuming the bimodal droplet size distribution from Spaulding 
et al. (2017).  

Pseudo-component % Below 
900 m 

% Below 
200 m 

% Below 
40 m 

% 
Evaporated 

Benzene  52  77  80  20 
Toluene  34  50  53  47 
Ethylbenzene & 

xylenes  
26  35  37  63 

C3-benzenes  21  27  28  71 
Soluble alkanes 

(C5–C10)  
14  20  21  79 

Total VOCs  14  21  22  78  
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results are summarized in Table 4. Just over half the benzene and one 
third of the toluene dissolved in the deep plume and considerable frac-
tions of these compounds dissolved before the rising oil droplets reached 
the water surface. 

After 28 April 2010, >90% of the BTEX in the water column was in 
the dissolved form. For other pseudo-components, the percentage in the 
dissolved phase varied over the release period due to changing DSD and 
the amount of surfaced oil that entrained (Fig. C-15, Appendix C). 
Relatively low percentages of mass in the dissolved phase during April, 
early May and on June 3 followed periods when SSDI was not used. In 
the model, evaporation of VOCs occurred within an hour after oil 
surfacing. Thus, subsequent entrainment of surfaced oil did not result in 
consequential concentrations of dissolved BTEX or other VOCs in surface 
waters. 

3.3.2. Comparisons to literature estimates 
Early analyses of the mass balance (or “budget”) for the DWH spill 

were based on partial information and expert opinion (Camilli et al., 
2010; Lehr et al., 2010; McNutt et al., 2012b; Reddy et al., 2012) or used 
atmospheric VOC measurements made above and downwind of the 
surfacing oil on 8–10 June 2010 (Ryerson et al., 2012). Other discus-
sions of the budget primarily reference these sources for their estimates 
(e.g., Boufadel et al., 2014; Joye, 2015; Joye et al., 2016; Passow and 
Hetland, 2016; Romero et al., 2017; Bracco et al., 2020; Passow and 
Overton, 2021). Further, clarification is needed whether a specific 
budget includes both the gas and oil, or the oil hydrocarbons above some 
carbon number (e.g., C5+). 

Lehr et al.'s (2010) estimates, recalculated to exclude the amount 
recovered at the wellhead, were: skimmed (2–5%), burned (6–7%), 
dispersed in the water column (26–51%), evaporated or dissolved 
(24–30%), and other (13–35%), which included oil that was floating, 
ashore and in sediments. Comparisons to amounts skimmed and burned 
were discussed above. However, the purpose of the Lehr et al. (2010) 
report was to inform Incident Command during the spill response, and 
data were not available to improve estimate accuracy. Their objective 
was not to quantify the fate of oil (e.g., degradation). The water column 
estimates were based on assumed dispersant effectiveness for SSDI and 
surface applications, with a rough estimate of natural dispersion. Even 
so, those early estimates were not inconsistent with those of the present, 
much more detailed analysis. 

In the base case model simulation, 11% of the released oil remained 
in waters below 40 m, falling within Valentine et al.'s (2014) estimated 
range of 4–31% being sequestered in the deep-sea. Daling et al. (2014) 
estimated dissolution loss during the ascent from depth to the surface 
included all the water-soluble hydrocarbons (~15% of the source oil), 
plus ~18% of the total PAH's (~0.2% of the source oil). The base case 
model estimates for the four PAC pseudo-components ranged from 8 to 
23% remaining below 40 m, in agreement with Daling et al. (2014). 

Ryerson et al. (2012) measured VOCs in the atmosphere in the area 
around the wellhead, estimating that, on June 10, 19–20% of the total oil 
hydrocarbon mass released to the environment was trapped in the deep 
plume, 8–9% was in the surface slicks near the wellhead, and 
17.4–18.4% was evaporated; leaving ~54% unaccounted for in their 
analysis. They presumed that the missing fraction of oil was bio-
degraded, suspended in the water column other than in the deep 
intrusion layer, and/or on the seabed. The Ryerson et al. (2012) mass 
budget analysis has a number of sources of uncertainty, including that it 
depends on (1) an assumed oil mass released June 8–10 (to which an 
integration of measurements was compared), (2) an estimate of the total 
integrated DO anomaly from field samples by Kessler et al. (2011) and 
(3) Hazen et al.'s (2010) estimated ratios of alkanes to toluene in the 
plume phase versus in the leaking fluid phase (assumed to reflect the 
ratio of droplet to dissolved phase hydrocarbons – on the premise of the 
co-location of the dissolved and droplet phases). To the extent that 
droplets rose (or sank) out of the deep plume, preferentially leaving 
dissolved-phased hydrocarbons at depth (processes known to have 

occurred), the Ryerson et al. (2012) estimate of 19–20% of the oil mass 
being in the deep plume is an overestimate. 

By comparison, SIMAP model estimates for all oil released by June 
10 were ~19% in the water column (~4% below 40 m), 20% degraded 
(~6% below 40 m), 13% on the water surface, 39% in the atmosphere, 
and 7% ashore. By June 10, 90% of the oil released to date had surfaced 
and the other 10% was below 40 m. These results are consistent with 
Ryerson et al.'s (2012) estimates, given their likely over-estimation of 
the percentage in the deep plume and that they did not fully consider the 
cumulative fate from oil released earlier in the spill. We also note that 
Ryerson et al.'s estimates were based only on measurable compounds, 
whereas SIMAP's 39% evaporated also included mass measured in 
boiling cuts, but not measured by chemical analyses. 

Based on their model analysis, assuming VMD = 1.3 mm from 
VDROP-J with mass in microdroplets <130 μm in diameter increased to 
1.2% of the oil, Gros et al. (2017) concluded that 59% of the semi- 
soluble and non-soluble compounds (C10+) reached the sea surface 
on June 8. Approximating the DSD from Gros et al. (2017) and based on 
the rise times to the surface of the various droplet sizes calculated with 
SIMAP (Fig. C-7), 73.5% of the residual oil, which was released in >1 
mm droplets, would surface by 11 h after a model initialization on June 
8. Droplets >0.6 mm and >0.3 mm accounting for 93% and 97% of the 
residual oil would surface by 21 and 73 h, respectively. Thus, the time 
frame of the Gros et al. (2017) estimate influences the reported results, 
making comparisons difficult. 

3.3.3. Oil sedimentation 
Oil sedimentation occurred along with discharged olefin-containing 

Synthetic-Based drilling Muds (SBM) and sediments, particularly as part 
of the several unsuccessful top-kill activities during May 26–28, when 
~30,000 bbl (4770 m3) of SBM were released from the well into the 
water column (Stout and Payne, 2017). The footprint of SBM contami-
nation was up to 10 cm thick within 2.3 km of the wellhead, comprising 
an area of ~6.5 km2 (Stout and Payne, 2017). The oil mass associated 
with SBM was not included in spill volume estimates or in the mass 
balance herein. 

In the deep-sea, the MC252 footprint on the sediment surface (~1 
cm) extended to about 40 km from the well (Valentine et al., 2014; Stout 
and Payne, 2016a; Stout et al., 2016b, 2017; Stout and German, 2018; 
Babcock-Adams et al., 2017). The presented modeling includes sedi-
mentation due to interactions with mineral SPM and bathtub ring 
impingement (Valentine et al., 2014; Stout et al., 2017) but does not 
include MOSSFA. A literature review was conducted to estimate the oil 
amount transported to sediments in marine oil snow (MOS). Typically, 
oil sedimentation via mineral-SPM interactions (variously called oil- 
mineral aggregates, OMAs, or oil-sediment aggregates, OSAs) becomes 
significant at >100 mg/L SPM (Boehm, 1987; Payne et al., 1987). 
Because mineral SPM concentrations are very low (<5 mg/L) in the 
offshore Gulf of Mexico (D'Sa et al., 2007; D'Sa and Ko, 2008; Salisbury 
et al., 2004), sedimentation of MC252 oil components identified in 
offshore sediments (Joye et al., 2011; Valentine et al., 2014; Chanton 
et al., 2015; Stout and Payne, 2016a, 2017; Stout et al., 2016b, 2017; 
Romero et al., 2017; Babcock-Adams et al., 2017; Passow and Stout, 
2020) likely resulted from formation and settling of MOS (Passow et al., 
2012; Ziervogel et al., 2014; Joye et al., 2014; Brooks et al., 2015; 
Passow, 2016; Daly et al., 2016; Romero et al., 2015, 2017; Babcock- 
Adams et al., 2017; Passow and Stout, 2020; Burd et al., 2020). Chemical 
analysis of offshore sediment samples showed patterns indicative of 
MOS sedimentation originating both from surfaced and subsea oil 
(Valentine et al., 2014; Romero et al., 2015, 2017; Stout et al., 2017; 
Stout and German, 2018; Passow and Stout, 2020). 

Romero et al. (2017) estimated that 1.9 ± 0.9 × 104 MT of hydro-
carbons (>C9 measured saturated and aromatic fractions) from the 
DWH discharge settled in coastal, shelf and deep-sea sediments. Their 
estimate, that this represented ~21 ± 10% of the oil released to the 
environment, was based on the discharge volume in the USDC (2015) 
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decision, which was 77.3% of government estimate that we assumed. 
Relative to the government estimate of the spill volume, Romero et al.'s 
estimate corresponds to ~16 ± 8% of the oil released to the environ-
ment. Further, Romero et al. (2017) estimated 1253–2081 MT sedi-
mented in coastal areas (not including 6729–35,560 MT in northern 
parts of Barataria and Terrebonne Bays), 277–395 MT on the continental 
shelf, and 1269–3213 MT in the deep-sea. In our model, it was assumed 
that oil reaching the coastline accumulated “on shore”, and coastal oil/ 
sediment dynamics were not simulated. Thus, much of the oil that would 
end up in coastal sediments was counted as on shore. The complexities of 
nearshore processes and petroleum sources other than the DWH spill 
contribute to uncertainties in the Romero et al. sedimentation estimates 
for coastal waters. Romero et al.'s (2017) estimates for sedimented mass 
for the shelf and deep-sea (which settled as part of MOS), accounting for 
the fraction of the C9+ compounds in the oil actually measured (20.9% 
by their estimate), amount to 1.3–3.1% of the 554,000 MT of C5+ oil 
released to the environment. 

Estimates of excess (MC252) hopane in the sediments in 2010/2011 
at depths of ~900–1700 m within 40 km of the wellhead made by 
Valentine et al. (2014) and Stout et al. (2017) were 1.8 ± 1.0 MT and 
2.00–2.26 MT, equivalent to 4.7 ± 2.5% and 5.2–5.9%, respectively, of 
the released hopane (based on 68.8 mg hopane/kg oil, Stout et al., 2017; 
554,000 MT oil released). Chanton et al. (2015) estimated an equivalent 
of 0.5 to 9.1% (best estimate 3.0–4.9%) of the discharged oil (based on 
14C in surface sediments) was in offshore sediments, a comparable 
range. 

Based on forensic analysis of sediment trap samples from 58 km 
northeast of the well (400–450 m water depth), Stout and German 
(2018) estimated at least ~0.71 MT of hopane (1.9% of the hopane 
spilled) settled in MOS from surfaced oil. Of this, 7–11% was included in 
the deep-sea sedimented hopane estimate by Stout et al. (2017). Stout 
and German (2018) provided an updated estimate that 2.02–2.14 MT of 
hopane settled in MOS on the shelf and offshore in an area of 7600 km2, 
and that 33–35% of the MOS settled from the surface and 65–67% 
originated from the deep plume. The average ratio of TPAH50 (sum of 
50 PAHs considered by DWH Trustees (2016, Stout et al., 2017)) to 
hopane in the sediment traps during the active release period when 
surface-derived MOS settled was 6.1 (Stout and German, 2018), whereas 
in fresh oil it was 175 (Stout, 2015a). Thus, the oil in MOS from the 
surface was highly weathered residual oil, containing 3.5% of the 
original TPAH50 and none of the soluble compounds or volatiles. As 
hopane was 0.02% of the residual fraction, the 0.66–0.75 MT of hopane 
in MOS originating from surfaced oil represented 3645–4142 MT of 
settled oil, which was 0.7% of the oil released to the environment. 

Sediment trap samples from 1400 m depth to 6.5 km southwest of the 
wellhead (Yan et al., 2016) indicated the oil in MOS at that depth was 
highly weathered. A relatively large pulse of MOS, collected 25 
August–4 September 2010, had 9.3 times as much TPAH50 as hopane 
(Passow and Stout, 2020), indicating 5.3% of the original TPAH50 
remained. This MOS pulse, which closely followed a phytoplankton 
bloom reported by Hu et al. (2011), contained high concentrations of 
diatom frustules, suggesting sinking phytoplankton marine snow scav-
enged oil droplets from the deep plume and carried them to the sea floor 
(Passow and Stout, 2020). Most of the compounds in pseudo- 
components AL1 to AL8 had biodegraded in the MOS captured by the 
1400-m sediment trap (Passow and Stout, 2020), and in sediment 
samples taken >1.6 km from the well (Brakstad et al., 2018). Thus, 
~40% of the original C5+ oil remained with the hopane in the MOS in 
the deep plume, and MOSSFA originating in the deep plume totaled 
7558–8240 MT, representing 1.4–1.5% of the oil released to the envi-
ronment. As the modeled amount of oil retained in the deep plume 
ranged from 11,080–33,230 MT (2–6% of the released oil), these esti-
mates are in reasonable agreement. 

While surface-derived MOS flux occurred during the period of active 
oil release (Stout and German, 2018), oil accumulated in the deep-sea 
sediments throughout the fall of 2010 and into 2011 (Yan et al., 2016; 

Passow and Stout, 2020). Babcock-Adams et al. (2017) found higher 
concentrations of petroleum biomarkers in deep-sea sediments in 
September 2010 relative to May 2010, followed by a peak in late 
November 2010 at stations near the well, concluding that most of the 
sedimentation did not occur during or immediately after the blowout. 
Thus, much of the MOS sedimentation from the deep plume occurred 
after 31 August 2010 (until July 2011), whereas the surface-derived 
MOSSFA occurred during the simulated period. This suggests that by 
not including MOSSFA in the model, ~0.7% of the oil counted as being 
in surface waters sedimented as part of surface-derived MOS. 

Stout and Payne (2016b) estimated that 17.6% of burned oil formed 
residues (lumps and flakes) that sank to the seafloor. Based on the 
model-estimated 2.7% of the oil mass burned, ~0.5% of the spilled oil 
settled as burn residues. These residues likely were not present in sedi-
ment traps or samples. 

In summary, based on the Stout and German (2018) and Passow and 
Stout (2020) analyses, and correcting for “oil” composition on the sea 
floor relative to hopane that was used to make the estimates, 2.1–2.2% 
of the 554 thousand MT of C5+ oil released settled via MOS on the shelf 
and in the deep-sea; ~0.7% from the surface and 1.4–1.5% originated 
from the deep plume. By 31 August 2010, modeled OSA sedimentation 
amounted to 0.4–0.5% of the oil released to the environment. MOS and 
OSA sedimentation on the shelf and in the deep-sea totaled ~1.2% by 31 
August 2010, and ~2.6% of the spilled oil by 2011. Sedimented burn 
residues accounted for another ~0.5% of the spilled oil. Thus, ~3.1% of 
the spilled oil reached shelf and deep-sea sediments. This estimate is 
consistent with Romero et al.'s (2017) estimates for sedimented mass on 
the shelf and in the deep-sea, which were equivalent to 1.3–3.1% of the 
spill oil, and with Chanton et al.'s (2015) best estimate of 3.0–4.9% of 
the discharged oil in offshore sediments. 

3.4. Comparison of model results to observational data 

3.4.1. Surface oil 

3.4.1.1. Amount of floating oil. Fig. 4 compares the modeled floating oil 
volume over time for the base case (using the Spaulding et al. bimodal 
DSD) with estimates based on interpretation of remote sensing imagery. 
The average oil thickness estimates for MVIS, MTIR, and Landsat TM are 
uncertain, being based on representative values within broad ranges 
(Table C-7, Appendix C). The SAR estimates developed by MacDonald 
et al. (2015) were more narrowly quantified based on field data, albeit 
they are estimates of average thickness for highly variable oil coverages. 
From 1 May to 31 July 2010, the modeled floating oil volumes (not 
including the water in emulsions) averaged 27,100 m3 (26,500 MT), 
whereas the SAR-based estimates averaged 25,900 m3. The comparisons 
in various time intervals show good agreement, well within ±one 
standard deviation, indicating the Spaulding et al. (2015, 2017) bimodal 
DSD and SIMAP model produced reasonable results (Table 5). 

The model-predicted floating oil mass increased to a maximum of 
~62,000 MT on June 3, then declined to ~127 MT on August 31 (Fig. 3). 
Floating oil was “visible” via remote sensing until the August 9th SAR 
observation (MacDonald et al., 2015), when the model predicted 6200 
MT. SAR and other imagery could not detect areas of weathered oil 
residuals, only fresh oil, emulsions and continuous sheens (Garcia- 
Pineda et al., 2009, 2013a, 2013b; Hu et al., 2009; Leifer et al., 2012; 
Svejkovsky et al., 2012, 2016; MacDonald et al., 2015). Over time, 
floating oil entrained into the water or became weathered residuals 
(defined as when pseudo-components AR1–AR9 and AL1–AL8 summed 
to <1% of oil mass), assumed awash in the wave mixed layer of the 
water column. By August 31, 61% of the water column mass was in the 
form of weathered residuals, either in surface waters or in the deep sea. 
These residuals would have been the source for MOS in the fall of 2010. 

Approximating the DSD from Gros et al. (2017) (see French-McCay 
et al. (2021b) and accounting for evaporation and re-entrainment, 
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during June 8–10 the floating oil amounted to 32–34% of the released 
oil assuming the ~Gros et al. (2017) DSD and 13–15% assuming the 
Spaulding et al. (2015, 2017) bimodal DSD. Thus, the ~Gros et al. 
(2017) DSD resulted in ~2.4 times as much floating oil as the Spaulding 
et al. (2017) bimodal DSD, an amount higher than indicated by the 
remote sensing data (Fig. 4). 

3.4.1.2. Weathering state. Stout and Payne (2016b) and Stout et al. 
(2016a) analyzed the weathering state of 62 floating oil samples 
collected May–July 2010, finding that by the time the oil reached the 
water surface, it had lost most of the mass below C8 (i.e., BTEX, AR1, 
and soluble alkanes, AR9). Freshly surfaced oil did contain some 
measurable BTEX and soluble alkanes (Stout et al., 2016a). However, 
evaporation quickly depleted the mass content up to C13 (i.e., alkanes to 
n-C13 and 1- to 2-ring aromatics) while oil was within 10 km of the 
wellhead. Ryerson et al. (2011) found no detectable VOCs in the at-
mosphere outside of a narrow plume extending ~10 km downwind of 
the wellhead. The model predicted consistent results; floating oil within 
10 km of the well was >95% depleted of compounds up to C13, and 
>98% depleted of compounds up to C10. 

TPAH50 (corresponding to pseudo-components AR5 to AR8) in 
floating oil samples collected <10 km from the wellhead were depleted 
12–91%. Freshly surfaced oil was ~12% depleted in TPAH50, while 
continual re-supply of surfacing oil and evaporation reduced the average 
to 54 ± 20%. Samples collected 10–75 km from the well, exhibited 85 ±
14% depletion of TPAH50 (Stout et al., 2016a). The model predicted 
consistent TPAH50 results with these floating oil samples (Table 6). 
Freshly surfaced oil within 10 km of the wellhead averaged 7% TPAH50 
depletion (range 1–16%) during June 2010, as compared to 12% for the 
sample taken on June 16th at 2 km from the well. 

While photo-oxidation is an important weathering process for 
floating oil (Ward et al., 2018; Ward and Overton, 2020), the fate of 
photoproducts resulting from photo-oxidation was not quantified here-
in. Research is needed to characterize both the production rates and the 
properties of the photoproducts to quantify their dissolution, biodeg-
radation, and fate. 

3.4.2. Atmospheric emissions 
The modeled mass flux to the atmosphere (Fig. 5) varied with 

changing wind conditions, as the DSD changed with varying SSDI ap-
plications (Fig. B-3, Appendix B), and as the amount of oil released to the 
environment decreased (Fig. B-1, Appendix B). The atmospheric flux of 
VOCs, including soluble pseudo-components (BTEX, C3-benzenes), 
decreased throughout the spill as SSDI became more effective (Fig. 5; 
Figs. C-16 and C-17, Appendix C). Semi-soluble and non-soluble volatile 
emissions peaked during periods when droplet sizes were relatively 
large (i.e., when there was no SSDI). Table 3 summarizes the evaporated 

Fig. 4. Model-predicted (base case) floating oil volumes, as oil only and volume including water in emulsions, compared to estimated volumes based on remote 
sensing data. 

Table 5 
Modeled (mean over the indicated time) and remote sensing-based estimates (based on SAR observations) of surface floating oil.  

Dates in 2010 Modeled oil (MT) Modeled oil (m3) Model oil with water in emulsions (m3) Oil based on SAR (m3) 

Mean Standard deviation # Observations 

April  2890  3000  6600  2800  2000  2 
May  22,700  23,300  59,700  27,200  19,600  13 
June  47,400  48,300  130,200  39,600  14,100  9 
July 1–15  12,800  13,100  34,500  15,100  7500  6 
May 1–July 15  29,200  29,800  78,580  28,600  17,800  28 
July  11,900  12,200  32,700  11,900  7500  10 
May 1–July 31  26,500  27,100  71,500  25,900  18,200  32  

Table 6 
Modeled percentage of TPAH50 in floating oil, assuming the bimodal droplet 
size distribution from Spaulding et al. (2017), compared to analyses of 60 
floating oil samples taken 10 May to June 20, 2010 from Stout et al. (2016a).  

Source Distance May June Overall 

Samples <10 km 54 ± 15 53 ± 35 54 ± 20 
Samples 10–75 km 86 ± 16 83 ± 8 85 ± 14 
Model <2 km 20.8 26.0 22.9 
Model 2–4 km 38.0 48.4 42.0 
Model 4–10 km 50.2 64.4 54.2 
Model <10 km 46.1 56.3 49.3 
Model All 73.9 80.8 77.4  
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mass percentages for the volatile and semi-volatile pseudo-components. 
Table 7 lists the average VOC flux (MT/hour), and percent reductions 
from the model case assuming no SSDI, for specific periods. VOC emis-
sions became negligible just after the release stopped. VOC emissions 
were reduced by 4% in May, 23% in June, and 26% in the first half of 
July (uncertainty ranges in Table 7). The average reduction in VOC 
emissions during June 3–July 10, when SSDI was relatively consistently 
applied, was 26%. 

Based on shipborne and airborne measurements during 8–10 June 
2010, Ryerson et al. (2012) estimated that 460 ± 230 MT of hydrocar-
bons evaporated on June 10. The uncertainty (± 50%) was attributed to 
uncertainties in the integration of atmospheric plume hydrocarbon data 
from samples taken along the transects flown. Of the 460 MT/day 
(Table 8), 258 MT/day were of measurable hydrocarbons up to C11, 
with <n-C4 alkanes negligible. C6 through C11 aromatic compounds 
(BTEX, C3-benzenes and naphthalene being measured) contributed 45 
MT/day to this flux (Ryerson et al., 2011, 2012). Ryerson et al. (2012) 
estimated (modeled) the evaporated flux of unmeasured semi-volatile 
alkanes >n-C11 (202 MT/day) using the volatility distribution of the 
oil mixture determined from the chemical composition and evaporation 
measurements in laboratory studies (de Gouw et al., 2011). 

The ranges of modeled atmospheric flux estimates for June 10, 
assuming various DSDs, overlap with the Ryerson et al. (2012) uncer-
tainty ranges. The modeled base-case estimates are higher than the 
Ryerson et al. estimates for ≤C11 volatiles, but consistent for C11+
semi-volatiles (Table 8). The Ryerson et al. (2012) ≤C11 flux was under- 
estimated to the extent some of the evaporating mass was missed, either 
during sampling or because only some of the modeled compounds were 
measured in field samples. Alternatively, the model could have under-
estimated dissolution of the volatiles prior to surfacing, due to the 
assumed DSD. The high-effectiveness DSD (100% effectiveness) leads to 
the lowest atmospheric VOC flux, which agrees with the Ryerson et al. 
(2012) estimates, suggesting more dispersant effectiveness (smaller 
droplets) than either the base case or the ~Gros et al. (2017) DSD. 
However, that extreme case is unlikely as it assumed the subsea 
dispersant applications were 100% effective on the oil in the oil and gas 
plume, suggesting Ryerson et al. (2012) instead under-estimated the 
atmospheric flux. 

4. Summary and conclusions 

4.1. DSD model 

The analyses discussed above compare model results to field data 

related to floating oil (amounts and weathering states) and atmospheric 
emissions. In the companion paper (French-McCay et al., 2021b), model 
results and sample chemistry data from the deep plume are analyzed in 
detail, using fractionation indices (Reddy et al., 2012; Ryerson et al., 
2012; Gros et al., 2017) to evaluate chemical partitioning between deep 
and surface waters assuming the potential range of DSDs released from 
the nearfield. These comparisons validated the modeled oil fate and 
mass balance. 

Field evidence and model calculations support the presence of both 
large droplets (VMD > 1 mm) and small droplets (VMD < 300 μm) when 
SSDI was performed, as well as the production of small droplets during 
May via the releases though the kink holes. Observations of the 
dispersant treatment techniques, and the complex release conditions 
during June 4–July 10 when Top Hat #4 and the recovery pipe were in 
place, disrupting the buoyant plume dynamics, indicate the partial- 
treatment bimodal DSD described by Spaulding et al. (2017) is the 
most realistic model of those examined. In addition, dispersant-induced 
tip-streaming (Zhao et al., 2017b; Gros et al., 2017; Boufadel et al., 
2020), or some other mechanism resulting in the formation of micro-
droplets, may have coincided with the bulk of the oil present in a DSD of 
larger droplets (Boufadel et al., 2018). 

4.2. Effectiveness of subsea dispersant use 

The percentage of oil dispersed and remaining subsea varied from 8 
to 13% during the SSDI usage period, limited by the low amounts of 
dispersant applied per oil volume (<1%) and the variable dispersant 
application effectiveness, as well as time intervals without SSDI. On 
average over the entire spill, SSDI reduced the oil mass surfacing by 
~7.1% and increased mass retained in the water column by ~3.9% at 
depths >900 m, ~2.5% between 200 and 900 m deep, and 0.4% be-
tween 40 and 200 m (Table 2). The other 0.9% was dispersed in surface 
waters (<40 m). 

From 1 May to 31 July 2010, the (base case) model-predicted 
floating oil averaged 26,500 MT. Assuming no subsea dispersant use, 
the model predicted an average of 29,200 MT of floating oil would have 
been present in that period. Thus, on average, there was 9% less oil 
floating during May–July because of the subsea dispersant applications. 

Because weathering processes (dissolution and biodegradation) are 
faster for smaller oil droplets due to their higher surface area per unit 
volume (see experimental evidence in Brakstad et al., 2015), and since 
smaller droplets rise more slowly, much more dissolution and biodeg-
radation occurred at depth when droplet size was reduced by inclusion 
of SSDI. Consequently, SSDI reduced the VOC content of surfacing oil, 

Fig. 5. Emissions of Volatile Organic Compounds (VOCs) and semi-volatile compounds to the atmosphere for the base case assuming the bimodal droplet size 
distribution. 

D.P. French-McCay et al.                                                                                                                                                                                                                     



Marine Pollution Bulletin 171 (2021) 112681

12

and so reduced the evaporative flux of VOCs. SSDI reduced VOC evap-
oration (i.e., BTEX, C3-benzenes, and C5–C10 alkanes) by ~4% in May 
2010 and by ~26% during 3 June–10 July 2010 (Table 7) because the 
DSD was shifted to smaller droplet sizes. Thus, the SSDI applications 
were increasingly effective over the course of the spill in reducing VOC 
exposures in the immediate area of the wellhead (since VOCs evaporated 
within an hour of the large untreated droplets surfacing near the well). 
Our estimates are corroborated by analyses by Gros et al. (2017), who 
concluded that VOC (C1–C9) emissions were decreased 28% by SSDI 
during June 2010, based on nearfield model calculations for 8 June 
2010. Our model estimated that SSDI decreased the VOC (C5–C10) flux 
to the air by 27% during 8–10 June 2010. 

4.3. Oil mass balance 

Based on the model results, and supported by comparisons to field 
observations, our best estimates of the oil mass balance are that of the 
spilled oil (C5+), ~41% evaporated, ~15% came ashore and ~ 3% was 
removed mechanically or by in situ burning. The other 41% of the oil 
was in the water column on 31 August 2010, where it ultimately 
degraded or settled to the sediments. The uncertainty range is ±10% of 
these estimates based on the range of potential DSDs. Nearly three 
quarters of the oil in the water column (30% of the released oil) had first 
surfaced and re-entrained by natural and dispersant-facilitated disper-
sion or by break up into particulate oil residuals. The other ~11% of the 
released oil, included 5% that entered (by dissolving or as micro-
droplets) the deep plume where it biodegraded or sedimented in the 
deep sea, and ~6% that dissolved and biodegraded in midwaters be-
tween 900 m and 40 m (5% between 900 and 200 m, 1% between 200 
and 40 m). Biodegradation of the volatile and soluble fractions 
remaining below 40 m was largely complete by the end of August 2010. 

We did not model nearshore sedimentation in coastal waters of oil 
that first reached shorelines. Some of the 15% of released oil coming 
ashore was cleaned up, and the remainder likely was incorporated into 

sediments near the shoreline. Our estimate is that ~3.1% of the C5+ oil 
settled on the shelf and in the deep sea, including ISB residues (~0.5%), 
MOS (~2.2%) and modeled settlement by OMA (~0.4%), leaving 38% 
in the water column by July 2011 (40% on 31 August 2010, adjusted 
downward for MOS). MOS and oil sedimentation has been discussed at 
length in the published literature (Passow et al., 2012; Fu et al., 2014; 
Joye et al., 2014; Chanton et al., 2015; Brooks et al., 2015; Passow, 
2016; Passow and Ziervogel, 2016; Daly et al., 2016; Stout et al., 2016b, 
2017; Romero et al., 2015, 2017; Babcock-Adams et al., 2017; Burd 
et al., 2020), with many concluding that the percentage accounted by 
MOS settlement was much higher than the ~2.2% we estimate based on 
analyses by Stout and German (2018) and Passow and Stout (2020; i.e., 
0.7% from the surface and ~1.5% from the deep plume). Much of this 
discrepancy is reconciled when the fraction of the C5+ oil that settled is 
quantified (as opposed to assuming that if, for example, 5% of hopane 
settled, 5% of the released oil settled) and the total spill mass considered 
is the C5+ oil released to the environment (i.e., less the subsea recovery) 
based on the best estimates of daily oil volume released, that from 
McNutt et al. (2012a). Romero et al.'s (2017) estimates equate to 
~1.3–3.1%, and Chanton et al.'s (2015) estimates equate to 3.0–4.9%, of 
the released oil settled on the shelf and in the deep-sea, corroborating 
our 3.1% estimate for shelf and deep-sea sedimentation. 

The mass balance of the released oil by summer of 2011 (summarized 
in Fig. 6), adjusted for MOS settlement, was ~41% evaporated, ~15% 
ashore and in nearshore sediments (areas <10 m deep), ~3% burned or 
mechanically removed, ~38.4% in the water column (partially 
degraded; 29% shallower and 9.4% deeper than 40 m), and 2.6% sedi-
mented by MOS and OMA deeper than 10 m. The oil fate and mass 
balance largely reflected the oil composition and bulk properties, the 
release depth, environmental conditions, and the DSD predicted based 
on oil and gas flow rates, release locations and configurations, and 
dispersant applications at the wellhead. The mass balance was verified 
by detailed analysis of observations (herein) and chemistry sample data 
(in companion paper, French-McCay et al., 2021b). For the most part, 
our estimates compare favorably with other published estimates when 
differences in components are considered (e.g., oil only versus oil and 
gas) and assumed release amounts are reconciled. Our modeling ana-
lyses were not calibrated or adjusted to fit observational data, allowing 
the model and results to be validated. As such, the oil mass balance 
results are robust. 

Appendices A – C. Supplementary data. Supplementary data to this 
article can be found online at https://doi.org/10.1016/j.marpolbul.20 
21.112681. 
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Table 7 
Average mass flux (MT/hour) of VOCs to the atmosphere, and percent reduction from the model assuming no SSDI, modeled using the droplet size distributions from 
Spaulding et al. (2017). (Base case is the bimodal droplet size distribution.)  

Case and metric April May June July 1–15 July 16–31 May 1–July 15 June 3–July 10 June 8–10 

Base case (MT/hour)  70.0  62.2  38.9  31.0  0.5  49.5  34.6  39.0 
No SSDI (MT/hour)  70.0  65.0  50.6  42.1  0.0  56.6  46.7  53.5 
% VOC reduction for base case  0  4.4  23  26  − 100  13  26  27 
% VOC reduction for low SSDI effectiveness  0  1.6  10  13  − 100  5.5  12  7.2 
% VOC reduction for high SSDI effectiveness  0  9.4  42  59  − 100  25  51  48  

Table 8 
Atmospheric emissions for June 10, as estimated by Ryerson and predicted by 
the model, assuming the three potential droplet size distributions from 
Spaulding et al. (2015, 2017a) and approximating the droplet size distribution 
from Gros et al. (2017).  

Compound 
group 

Ryerson 
et al. (2011, 
2012); MT/ 
day 

Model – base case 
(high – low 
effectiveness DSD); 
MT/day 

Model – assuming ~ 
Gros et al. (2017) 
droplet size 
distribution; MT/day 

n-C4 to n-C11 
alkanes 

213 ± 107 571 (331–772)  790 

BTEX, C3- 
benzenes and 
naphthalene 

45 ± 23 80 (10–61)  64 

Subtotal (C4 to 
C11 
compounds) 

258 ± 129 651 (341–833)  854 

C12 to C16 
alkanes 

202 ± 101 217 (211–298)  281 

Total (C1 to C16 
compounds) 

460 ± 230 868 (332− 1131)  1135  
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