92 research outputs found

    Non-linear dynamic response of a cable system with a tuned mass damper to stochastic base excitation via equivalent linearization technique

    Get PDF
    Abstract: Non-linear dynamic model of a cable–mass system with a transverse tuned mass damper is considered. The system is moving in a vertical host structure therefore the cable length varies slowly over time. Under the time-dependent external loads the sway of host structure with low frequencies and high amplitudes can be observed. That yields the base excitation which in turn results in the excitation of a cable system. The original model is governed by a system of non-linear partial differential equations with corresponding boundary conditions defined in a slowly time-variant space domain. To discretise the continuous model the Galerkin method is used. The assumption of the analysis is that the lateral displacements of the cable are coupled with its longitudinal elastic stretching. This brings the quadratic couplings between the longitudinal and transverse modes and cubic nonlinear terms due to the couplings between the transverse modes. To mitigate the dynamic response of the cable in the resonance region the tuned mass damper is applied. The stochastic base excitation, assumed as a narrow-band process mean-square equivalent to the harmonic process, is idealized with the aid of two linear filters: one second-order and one first-order. To determine the stochastic response the equivalent linearization technique is used. Mean values and variances of particular random state variable have been calculated numerically under various operational conditions. The stochastic results have been compared with the deterministic response to a harmonic process base excitation

    Dose to level I and II axillary lymph nodes and lung by tangential field radiation in patients undergoing postmastectomy radiation with tissue expander reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To define the dosimetric coverage of level I/II axillary volumes and the lung volume irradiated in postmastectomy radiotherapy (PMRT) following tissue expander placement.</p> <p>Methods and Materials</p> <p>Twenty-three patients were identified who had undergone postmastectomy radiotherapy with tangent only fields. All patients had pre-radiation tissue expander placement and expansion. Thirteen patients had bilateral expander reconstruction. The level I/II axillary volumes were contoured using the RTOG contouring atlas. The patient-specific variables of expander volume, superior-to-inferior location of expander, distance between expanders, expander angle and axillary volume were analyzed to determine their relationship to the axillary volume and lung volume dose.</p> <p>Results</p> <p>The mean coverage of the level I/II axillary volume by the 95% isodose line (V<sub>D95%</sub>) was 23.9% (range 0.3 - 65.4%). The mean Ipsilateral Lung V<sub>D50% </sub>was 8.8% (2.2-20.9). Ipsilateral and contralateral expander volume correlated to Axillary V<sub>D95% </sub>in patients with bilateral reconstruction (p = 0.01 and 0.006, respectively) but not those with ipsilateral only reconstruction (p = 0.60). Ipsilateral Lung V<sub>D50% </sub>correlated with angle of the expander from midline (p = 0.05).</p> <p>Conclusions</p> <p>In patients undergoing PMRT with tissue expanders, incidental doses delivered by tangents to the axilla, as defined by the RTOG contouring atlas, do not provide adequate coverage. The posterior-superior region of level I and II is the region most commonly underdosed. Axillary volume coverage increased with increasing expander volumes in patients with bilateral reconstruction. Lung dose increased with increasing expander angle from midline. This information should be considered both when placing expanders and when designing PMRT tangent only treatment plans by contouring and targeting the axilla volume when axillary treatment is indicated.</p

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Modeling of BHA dynamic behaviors

    No full text
    corecore