1,313 research outputs found
A checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the world
A checklist of the world species of Limnichidae (35 genera, 345 species) and Lutrochidae (1 genus, 11 species) is presented. The author, year of publication and page number, synonyms, distribution by country, and a terminal bibliography are given for each genus and species. Biological information is also reviewed
Plasma Electronics
Contains reports on four research projects.United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-7400)Lincoln Laboratory (Purchase Order DDL BB-107)National Science Foundation (Grant G-24073
The Galactic Distribution of Large HI Shells
We report the discovery of nineteen new HI shells in the Southern Galactic
Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc,
were found in the low resolution Parkes portion of the SGPS dataset, covering
Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of
individual shells, including positions, physical dimensions, energetics,
masses, and possible associations. We also examine the distribution of these
shells in the Milky Way and find that several of the shells are located between
the spiral arms of the Galaxy. We offer possible explanations for this effect,
in particular that the density gradient away from spiral arms, combined with
the many generations of sequential star formation required to create large
shells, could lead to a preferential placement of shells on the trailing edges
of spiral arms. Spiral density wave theory is used in order to derive the
magnitude of the density gradient behind spiral arms. We find that the density
gradient away from spiral arms is comparable to that out of the Galactic plane
and therefore suggest that this may lead to exaggerated shell expansion away
from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in
the Astrophysical Journa
The spectra and energies of classical double radio lobes
We compare two temporal properties of classical double radio sources: i)
radiative lifetimes of synchrotron-emitting particles and ii) dynamical source
ages. We discuss how these can be quite discrepant from one another, rendering
use of the traditional spectral ageing method inappropriate: we contend that
spectral ages give meaningful estimates of dynamical ages only when these ages
are << 10^7 years. In juxtaposing the fleeting radiative lifetimes with source
ages which are significantly longer, a refinement of the paradigm for radio
source evolution is required. The changing spectra along lobes are explained,
not predominantly by synchrotron ageing but, by gentle gradients in a magnetic
field mediated by a low-gamma matrix which illuminates an energy-distribution
of particles, controlled largely by classical synchrotron loss in the high
magnetic field of the hotspot. The energy in the particles is an order of
magnitude higher than that inferred from the minimum-energy estimate, implying
that the jet-power is of the same order as the accretion luminosity produced by
the quasar central engine. This refined paradigm points to a resolution of the
findings of Rudnick et al (1994) and Katz-Stone & Rudnick (1994) that both the
Jaffe-Perola and Kardashev-Pacholczyk model spectra are invariably poor
descriptions of the curved spectral shape of lobe emission, and indeed that for
Cygnus A all regions of the lobes are characterised by a `universal spectrum'.
[abridged]Comment: LaTeX, 4 figures. To appear in A
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
Two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions
An explicit two-soliton solution for the derivative nonlinear Schr\"odinger
equation with nonvanishing boundary conditions is derived, demonstrating
details of interactions between two bright solitons, two dark solitons, as well
as one bright soliton and one dark soliton. Shifts of soliton positions due to
collisions are analytically obtained, which are irrespective of the bright or
dark characters of the participating solitons.Comment: 11 pages, 4 figures. Phys. Lett. A 2006 (in press
Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains
The nonlinear dynamics of collisionless Alfven trains, including resonant
particle effects is studied using the kinetic nonlinear Schroedinger (KNLS)
equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven
waves to be sensitive to the sense of polarization as well as the angle of
propagation with respect to the ambient magnetic field. The combined effects of
both wave nonlinearity and Landau damping result in the evolutionary formation
of stationaryOA S- and arc-polarized directional and rotational
discontinuities. These waveforms are freqently observed in the interplanetary
plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be
found at http://sdphpd.ucsd.edu/~medvedev/papers.htm
Forbush decreases and turbulence levels at CME fronts
We seek to estimate the average level of MHD turbulence near coronal mass
ejection (CME) fronts as they propagate from the Sun to the Earth. We examine
the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together
with the data from other sources for three well observed Forbush decrease
events. Each of these events are associated with frontside halo Coronal Mass
Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the
magnitude of the Forbush decrease using a simple model for the diffusion of
high energy protons through the largely closed field lines enclosing the CME as
it expands and propagates from the Sun to the Earth. We use estimates of the
cross-field diffusion coefficient derived from published results of
extensive Monte Carlo simulations of cosmic rays propagating through turbulent
magnetic fields. Our method helps constrain the ratio of energy density in the
turbulent magnetic fields to that in the mean magnetic fields near the CME
fronts. This ratio is found to be 2% for the 11 April 2001 Forbush
decrease event, 6% for the 20 November 2003 Forbush decrease event and
249% for the much more energetic event of 29 October 2003.Comment: Accepted for publication in Astronomy and Astrophysics. (Abstract
abridged) Typos correcte
A nonextensive entropy approach to solar wind intermittency
The probability distributions (PDFs) of the differences of any physical
variable in the intermittent, turbulent interplanetary medium are scale
dependent. Strong non-Gaussianity of solar wind fluctuations applies for short
time-lag spacecraft observations, corresponding to small-scale spatial
separations, whereas for large scales the differences turn into a Gaussian
normal distribution. These characteristics were hitherto described in the
context of the log-normal, the Castaing distribution or the shell model. On the
other hand, a possible explanation for nonlocality in turbulence is offered
within the context of nonextensive entropy generalization by a recently
introduced bi-kappa distribution, generating through a convolution of a
negative-kappa core and positive-kappa halo pronounced non-Gaussian structures.
The PDFs of solar wind scalar field differences are computed from WIND and ACE
data for different time lags and compared with the characteristics of the
theoretical bi-kappa functional, well representing the overall scale dependence
of the spatial solar wind intermittency. The observed PDF characteristics for
increased spatial scales are manifest in the theoretical distribution
functional by enhancing the only tuning parameter , measuring the
degree of nonextensivity where the large-scale Gaussian is approached for
. The nonextensive approach assures for experimental studies
of solar wind intermittency independence from influence of a priori model
assumptions. It is argued that the intermittency of the turbulent fluctuations
should be related physically to the nonextensive character of the
interplanetary medium counting for nonlocal interactions via the entropy
generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.
- …