1,313 research outputs found

    A checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the world

    Get PDF
    A checklist of the world species of Limnichidae (35 genera, 345 species) and Lutrochidae (1 genus, 11 species) is presented. The author, year of publication and page number, synonyms, distribution by country, and a terminal bibliography are given for each genus and species. Biological information is also reviewed

    Plasma Electronics

    Get PDF
    Contains reports on four research projects.United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-7400)Lincoln Laboratory (Purchase Order DDL BB-107)National Science Foundation (Grant G-24073

    The Galactic Distribution of Large HI Shells

    Full text link
    We report the discovery of nineteen new HI shells in the Southern Galactic Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc, were found in the low resolution Parkes portion of the SGPS dataset, covering Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of individual shells, including positions, physical dimensions, energetics, masses, and possible associations. We also examine the distribution of these shells in the Milky Way and find that several of the shells are located between the spiral arms of the Galaxy. We offer possible explanations for this effect, in particular that the density gradient away from spiral arms, combined with the many generations of sequential star formation required to create large shells, could lead to a preferential placement of shells on the trailing edges of spiral arms. Spiral density wave theory is used in order to derive the magnitude of the density gradient behind spiral arms. We find that the density gradient away from spiral arms is comparable to that out of the Galactic plane and therefore suggest that this may lead to exaggerated shell expansion away from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in the Astrophysical Journa

    The spectra and energies of classical double radio lobes

    Get PDF
    We compare two temporal properties of classical double radio sources: i) radiative lifetimes of synchrotron-emitting particles and ii) dynamical source ages. We discuss how these can be quite discrepant from one another, rendering use of the traditional spectral ageing method inappropriate: we contend that spectral ages give meaningful estimates of dynamical ages only when these ages are << 10^7 years. In juxtaposing the fleeting radiative lifetimes with source ages which are significantly longer, a refinement of the paradigm for radio source evolution is required. The changing spectra along lobes are explained, not predominantly by synchrotron ageing but, by gentle gradients in a magnetic field mediated by a low-gamma matrix which illuminates an energy-distribution of particles, controlled largely by classical synchrotron loss in the high magnetic field of the hotspot. The energy in the particles is an order of magnitude higher than that inferred from the minimum-energy estimate, implying that the jet-power is of the same order as the accretion luminosity produced by the quasar central engine. This refined paradigm points to a resolution of the findings of Rudnick et al (1994) and Katz-Stone & Rudnick (1994) that both the Jaffe-Perola and Kardashev-Pacholczyk model spectra are invariably poor descriptions of the curved spectral shape of lobe emission, and indeed that for Cygnus A all regions of the lobes are characterised by a `universal spectrum'. [abridged]Comment: LaTeX, 4 figures. To appear in A

    Parametric instabilities in magnetized multicomponent plasmas

    Full text link
    This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The excitation is provided by parametrically pumping the magnetic field. Here two ion-like species are allowed to be fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary. Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves. We firstly investigate the pump wave in detail, in the case where the background magnetic field is perpendicular to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14 pages, 8 figure

    Two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions

    Full text link
    An explicit two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions is derived, demonstrating details of interactions between two bright solitons, two dark solitons, as well as one bright soliton and one dark soliton. Shifts of soliton positions due to collisions are analytically obtained, which are irrespective of the bright or dark characters of the participating solitons.Comment: 11 pages, 4 figures. Phys. Lett. A 2006 (in press

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Forbush decreases and turbulence levels at CME fronts

    Full text link
    We seek to estimate the average level of MHD turbulence near coronal mass ejection (CME) fronts as they propagate from the Sun to the Earth. We examine the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together with the data from other sources for three well observed Forbush decrease events. Each of these events are associated with frontside halo Coronal Mass Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the magnitude of the Forbush decrease using a simple model for the diffusion of high energy protons through the largely closed field lines enclosing the CME as it expands and propagates from the Sun to the Earth. We use estimates of the cross-field diffusion coefficient DD_{\perp} derived from published results of extensive Monte Carlo simulations of cosmic rays propagating through turbulent magnetic fields. Our method helps constrain the ratio of energy density in the turbulent magnetic fields to that in the mean magnetic fields near the CME fronts. This ratio is found to be \sim 2% for the 11 April 2001 Forbush decrease event, \sim 6% for the 20 November 2003 Forbush decrease event and \sim 249% for the much more energetic event of 29 October 2003.Comment: Accepted for publication in Astronomy and Astrophysics. (Abstract abridged) Typos correcte

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.
    corecore