2,254 research outputs found

    Safe, accurate, and precise sulfur isotope analyses of arsenides, sulfarsenides, and arsenic and mercury sulfides by conversion to barium sulfate before EA/IRMS

    Get PDF
    The stable isotope ratios of sulfur (δ(34)S relative to Vienna Cañon Diablo Troilite) in sulfates and sulfides determined by elemental analysis and isotope ratio mass spectrometry (EA/IRMS) have been proven to be a remarkable tool for studies of the (bio)geochemical sulfur cycles in modern and ancient environments. However, the use of EA/IRMS to measure δ(34)S in arsenides and sulfarsenides may not be straightforward. This difficulty can lead to potential health and environmental hazards in the workplace and analytical problems such as instrument contamination, memory effects, and a non-matrix-matched standardization of δ(34)S measurements with suitable reference materials. To overcome these practical and analytical challenges, we developed a procedure for sulfur isotope analysis of arsenides, which can also be safely used for EA/IRMS analysis of arsenic sulfides (i.e., realgar, orpiment, arsenopyrite, and arsenian pyrite), and mercury sulfides (cinnabar). The sulfur dioxide produced from off-line EA combustion was trapped in an aqueous barium chloride solution in a leak-free system and precipitated as barium sulfate after quantitative oxidation of hydrogen sulfite by hydrogen peroxide. The derived barium sulfate was analyzed by conventional EA/IRMS, which bracketed the δ(34)S values of the samples with three international sulfate reference materials. The protocol (BaSO(4)-EA/IRMS) was validated by analyses of reference materials and laboratory standards of sulfate and sulfides and achieved accuracy and precision comparable with those of direct EA/IRMS. The δ(34)S values determined by BaSO(4)-EA/IRMS in sulfides (arsenopyrite, arsenic, and mercury sulfides) samples from different origins were comparable to those obtained by EA/IRMS, and no sulfur isotope fractionations were introduced during sample preparation. We report the first sulfur isotope data of arsenides obtained by BaSO(4)-EA/IRMS. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00216-021-03854-y

    Contrasting motivation and learning strategies of ex-mathematics and ex-mathematical literacy students

    Get PDF
    Abstract: This inquiry contrasts motivation and learning strategies of ex-Mathematics (Maths) and ex-Mathematical Literacy (ML) students. ML ideally delivers candidates who can make sense of and actively participate in a world of numbers and numerical arguments, but ex-ML students are excluded from many undergraduate studies at most South African higher education institutions (HEIs). Institutions employ various strategies in enhancing student transition to higher education (HE), however, such options are rare for ex-ML students. A year-long foundation programme offered by a private HEI is one exception. This inquiry employed the Motivated Strategies for Learning Questionnaire and t-test, detecting significant differences in motivation and learning strategies between 111 ex-Maths and 81 ex-ML students. The intrinsic goal orientation, task value, self-efficacy, effort regulation and test anxiety-handling abilities of ex-Maths students were significantly superior. An integrated solution process addressing academic content and social-psychological attributes to improve the motivation of ex-ML students in support of their academic development is proffered

    Ultrathin epitaxial Fe films in vicinal GaAs(001): A study by spin-resolved photoelectron spectroscopy

    Get PDF
    Thin epitaxial Fe films have been grown on vicinal GaAs(001) substrates and their remanent magnetic properties and the degree of substrate atom diffusion investigated using synchrotron-based photoelectron spectroscopy. The vicinal Fe films, though exhibiting greater As diffusion than their singular homologues, displayed better film quality both from the structural and the magnetic points of view. The spin-resolved valence spectra of the vicinal films resemble those for crystalline bulk Fe at lower film thicknesses than for singular films

    Orally active antischistosomal early leads identified from the open access malaria box.

    Get PDF
    BACKGROUND: Worldwide hundreds of millions of schistosomiasis patients rely on treatment with a single drug, praziquantel. Therapeutic limitations and the threat of praziquantel resistance underline the need to discover and develop next generation drugs. METHODOLOGY: We studied the antischistosomal properties of the Medicines for Malaria Venture (MMV) malaria box containing 200 diverse drug-like and 200 probe-like compounds with confirmed in vitro activity against Plasmodium falciparum. Compounds were tested against schistosomula and adult Schistosoma mansoni in vitro. Based on in vitro performance, available pharmacokinetic profiles and toxicity data, selected compounds were investigated in vivo. PRINCIPAL FINDINGS: Promising antischistosomal activity (IC50: 1.4-9.5 µM) was observed for 34 compounds against schistosomula. Three compounds presented IC50 values between 0.8 and 1.3 µM against adult S. mansoni. Two promising early leads were identified, namely a N,N'-diarylurea and a 2,3-dianilinoquinoxaline. Treatment of S. mansoni infected mice with a single oral 400 mg/kg dose of these drugs resulted in significant worm burden reductions of 52.5% and 40.8%, respectively. CONCLUSIONS/SIGNIFICANCE: The two candidates identified by investigating the MMV malaria box are characterized by good pharmacokinetic profiles, low cytotoxic potential and easy chemistry and therefore offer an excellent starting point for antischistosomal drug discovery and development

    Atmospheric halogen and acid rains during the main phase of Deccan eruptions: magnetic and mineral evidence

    Get PDF
    Environmental changes linked to Deccan volcanism are still poorly known. A major limitation resides in the paucity of direct Deccan volcanism markers and in the geologically short interval where both impact and volcanism occurred, making it hard to evaluate their contributions to the mass extinction. We investigated the low-magnetic-susceptibility interval just below the iridium-rich layer of the Bidart (France) section, which was recently hypothesized to be the result of paleoenvironmental perturbations linked to paroxysmal Deccan phase 2. Results show a drastic decrease of detrital magnetite and presence of scarce akaganeite, a hypothesized reaction product formed in the aerosols derived from reaction of a volcanic plume with water and oxygen in the high atmosphere. A weathering model of the consequences of acidic rains on a continental regolith reveals nearly complete magnetite dissolution after ~31,000 yr, which is consistent with our magnetic data and falls within the duration of the Deccan phase 2. These results highlight the nature and importance of the Deccan-related environmental changes leading up to the end- Cretaceous mass extinction

    Atmospheric halogen and acid rains during the major Deccan episode: magnetic and mineral evidences

    Get PDF
    Environmental and climatic changes linked to Deccan volcanism are still poorly known. A major limitation resides in the paucity of direct Deccan volcanism markers and in the geologically short interval where both impact and volcanism occurred, making it hard to evaluate their contributions to the mass extinction. We investigated the low magnetic susceptibility interval just below the Iridium-rich layer of the Bidart (France) section, which was recently hypothesized to be the result of palaeoenvironmental perturbations linked to paroxysmal Deccan phase-2. Results show a drastic decrease of detrital magnetite and presence of fine specular akaganeite, a hypothesized reaction product between FeCl2 from the volcanic plume with water and oxygen in the high atmosphere. A weathering model of the consequences of acidic rains on a continental regolith reveals nearly complete magnetite dissolution after about 33,000 years, which is consistent with our magnetic data and the duration of the Deccan phase-2. This discovery represents an unprecedented piece of evidence of the nature and importance of the Deccan-related environmental changes

    LXR\u3csup\u3eTM\u3c/sup\u3e White Clover: Development of Transgenic White Clover (\u3cem\u3eTrifolium Repens\u3c/em\u3e) with Delayed Leaf Senescence

    Get PDF
    Leaf senescence is a type of programmed cell death characterized by loss of chlorophyll, lipids, protein, and RNA. Cytokinins are a class of plant hormones that play roles in many aspects of plant growth and development, including leaf senescence, apical dominance, the formation and activity of shoot meristems, nutrient mobilization, seed germination, and pathogen responses. They also appear to mediate a number of light- regulated processes, such as de-etiolation and chloroplast differentiation. It is known that the concentrations of endogenous cytokinins decline in plant tissues as senescence progresses. This observation provides the opportunity to manipulate the senescence program in transgenic plants to enhance biomass and seed production, through the regulated expression of cytokinin biosynthesis genes

    The World's Highest-Grade Cobalt Mineralization at Bou Azzer Associated With Gondwana Supercontinent Breakup, Serpentinite and Kellwasser Hydrocarbon Source Rocks

    Get PDF
    Cobalt arsenide deposits associated with Neoproterozoic serpentinite in Morocco represent the highest-grade cobalt resource worldwide. Yet, genetic models for their origin remain controversial. We report here mineralogical and geochemical evidence for arsenide-calcite mineralization at Bou Azzer to constrain the temporal framework and identify the geodynamic trigger for mineralization mechanisms. To this end, radiometric ages for ore minerals are paramount for understanding the origin of the Bou Azzer cobalt arsenide deposit. New safflorite (CoAs2) rhenium-osmium (Re-Os) ages are Late Devonian in age: 380.4 ± 2.9 and 373.4 ± 1.2 to 368.1 ± 5.0 million years ago (Ma) for coarse-grained and fine-grained safflorite, respectively. These dates overlap with the timing of break-up of the supercontinent Gondwana, and the building of an arch-and-basin geometry from northern Africa to Arabia. Our findings temporally and spatially contextualize previous knowledge of fluid chemistry and mineralization mechanisms involving a two-fluid mixing. Arsenide mineralization resulted from mixing of a methane-dominated fluid with highly saline basinal brines that leached Os (187Os/188Osinitial = 0.120 ± 0.001), and by corollary cobalt, from Neoproterozoic serpentinite. Carbon and sulfur stable isotope data of ore-stage calcite and arsenides, respectively, show that hydrocarbons acted as the main reductant for mineralization. We speculate that the seawater-derived brines sank into the sedimentary basins adjacent to a carbonate platform with the Bou Azzer serpentinite in its basement in the Late Devonian. In the context of an enhanced geothermal gradient, such brines would have been involved in warm hydrothermal alteration of hydrocarbon source rocks of the local expression of the Kellwasser event in the geological record of present-day Morocco. This warm hydrothermal alteration of hydrocarbon source rocks may have taken place for coarse-grained safflorite mineralization (380.4 ± 2.9 Ma) shortly after ca. 382–381 Ma Lower Kellwasser horizons were deposited, or, for fine-grained safflorite mineralization (373.4 ± 1.2 to 368.1 ± 5.0 Ma) while the Upper Kellwasser horizons of present-day Morocco were being deposited

    Metal-rich organic matter and hot continental passive margin: drivers for Devonian copper-cobalt-germanium mineralization in dolomitized reef-bearing carbonate platform

    Get PDF
    The abundance and types of reef-bearing carbonate platforms reflect the evolution of Devonian climate, with conspicuous microbial-algal reefs in the warm Early and Late Devonian and sponge-coral reefs in the cooler Middle Devonian. A dolomitized Wenlock-Lower Devonian microbial-algal reef-bearing carbonate platform hosts epigenetic copper-cobalt-germanium (Cu-Co-Ge) sulfide mineralization at Ruby Creek-Bornite in the Brooks Range, Alaska. Here, we present rhenium-osmium (Re-Os) radiometric ages and molybdenum and sulfur (δ(98/95)Mo = +2.04 to +5.48‰ and δ(34)S = −28.5 to −1.8‰) isotope variations for individual Cu-Co-Fe sulfide phases along the paragenetic sequence carrollite-bornite-pyrite. In the context of a hot, extensional passive margin, greenhouse conditions in the Early Devonian favored restriction of platform-top seawater circulation and episodic reflux of oxidized brines during growth of the carbonaceous carbonate platform. Molybdenum and sulfur isotope data signal the stepwise reduction of hot brines carrying Cu during latent reflux and geothermal circulation for at least ca. 15 million years from the Early Devonian until Cu-Co sulfide mineralization ca. 379–378 million years ago (Ma) in the Frasnian, Late Devonian (weighted mean of Re-Os model ages of carrollite at 379 ± 15 Ma [n = 4]; Re-Os isochron age of bornite at 378 ± 15 Ma [n = 6]). On the basis of petrographic relationships between sulfides and solid bitumen, and the Mo and S isotope data for sulfides, we imply that the endowment in critical metals (e.g., Co, Ge, Re) in the Ruby Creek-Bornite deposit is linked to the activity of primary producers that removed trace metals from the warm Early Devonian seawater and concentrated Co, Ge, and Re in algal-bacterial organic matter in carbonate sediments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00126-022-01123-1
    corecore