13 research outputs found

    Discriminating severe seasonal allergic rhinitis. Results from a large nation-wide database.

    No full text
    Allergic rhinitis (AR) is a chronic disease affecting a large amount of the population. To optimize treatment and disease management, it is crucial to detect patients suffering from severe forms. Several tools have been used to classify patients according to severity: standardized questionnaires, visual analogue scales (VAS) and cluster analysis. The aim of this study was to evaluate the best method to stratify patients suffering from seasonal AR and to propose cut-offs to identify severe forms of the disease. In a multicenter French study (PollinAir), patients suffering from seasonal AR were assessed by a physician that completed a 17 items questionnaire and answered a self-assessment VAS. Five methods were evaluated to stratify patients according to AR severity: k-means clustering, agglomerative hierarchical clustering, Allergic Rhinitis Physician Score (ARPhyS), total symptoms score (TSS-17), and VAS. Fisher linear, quadratic discriminant analysis, non-parametric kernel density estimation methods were used to evaluate miss-classification of the patients and cross-validation was used to assess the validity of each scale. 28,109 patients were categorized into "mild", "moderate", and "severe", through the 5 different methods. The best discrimination was offered by the ARPhyS scale. With the ARPhyS scale, cut-offs at a score of 8-9 for mild to moderate and of 11-12 for moderate to severe symptoms were found. Score reliability was also acceptable (Cronbach's α coefficient: 0.626) for the ARPhyS scale, and excellent for the TSS-17 (0.864). The ARPhyS scale seems the best method to target patients with severe seasonal AR. In the present study, we highlighted optimal discrimination cut-offs. This tool could be implemented in daily practice to identify severe patients that need a specialized intervention

    Modifiable exposures to air pollutants related to asthma phenotypes in the first year of life in children of the EDEN mother-child cohort study.

    Get PDF
    International audienceBACKGROUND: Studies have shown diverse strength of evidence for the associations between air pollutants and childhood asthma, but these associations have scarcely been documented in the early life. The purpose of this study was to evaluate the impacts of various air pollutants on the development of asthma phenotypes in the first year of life. METHODS: Adjusted odds ratios were estimated to assess the relationships between exposures to air pollutants and single and multi-dimensional asthma phenotypes in the first year of life in children of the EDEN mother-child cohort study (n = 1,765 mother-child pairs). The Generalized Estimating Equation (GEE) model was used to determine the associations between prenatal maternal smoking and in utero exposure to traffic-related air pollution and asthma phenotypes (data were collected when children were at birth, and at 4, 8 and 12 months of age). Adjusted Population Attributable Risk (aPAR) was estimated to measure the impacts of air pollutants on health outcomes. RESULTS: In the first year of life, both single and multi-dimensional asthma phenotypes were positively related to heavy parental smoking, traffic-related air pollution and dampness, but negatively associated with contact with cats and domestic wood heating. Adjusted odds ratios (aORs) for traffic-related air pollution were the highest [1.71 (95% Confidence Interval (CI): 1.08-2.72) for ever doctor-diagnosed asthma, 1.44 (95% CI: 1.05-1.99) for bronchiolitis with wheezing, 2.01 (95% CI: 1.23-3.30) for doctor-diagnosed asthma with a history of bronchiolitis]. The aPARs based on these aORs were 13.52%, 9.39%, and 17.78%, respectively. Results persisted for prenatal maternal smoking and in utero exposure to traffic-related air pollution, although statistically significant associations were observed only with the asthma phenotype of ever bronchiolitis. CONCLUSIONS: After adjusting for potential confounders, traffic-related air pollution in utero life and in the first year of life, had a greater impact on the development of asthma phenotypes compared to other factors

    Non-Accidental Health Impacts of Wildfire Smoke

    Get PDF
    International audienceWildfires take a heavy toll on human health worldwide. Climate change may increase the risk of wildfire frequency. Therefore, in view of adapted preventive actions, there is an urgent need to further understand the health effects and public awareness of wildfires. We conducted a systematic review of non-accidental health impacts of wildfire and incorporated lessons learned from recent experiences. Based on the literature, various studies have established the relationship between one of the major components of wildfire, particulate matter (particles with diameter less than 10 µm (PM 10) and less than 2.5 µm (PM 2.5)) and cardiorespiratory symptoms in terms of Emergency Rooms visits and hospital admissions. Associations between wildfire emissions and various subclinical effects have also been established. However, few relationships between wildfire emissions and mortality have been observed. Certain segments of the population may be particularly vulnerable to smoke-related health risks. Among them, people with pre-existing cardiopulmonary conditions, the elderly, smokers and, for professional reasons, firefighters. Potential action mechanisms have been highlighted. Overall, more research is needed to better understand health impact of wildfire exposure

    Estimating indoor galaxolide concentrations using predictive models based on objective assessments and data about dwelling characteristics

    No full text
    International audienceBACKGROUND: Galaxolide (HHCB) is used for fragrance in many consumer products. The aim of the current study was to use objective assessments of HHCB to build a predictive model in order to estimate indoor-measured HHCB concentrations from questionnaire-based data on dwelling characteristics and occupants' habits and activities. METHODS: Environmental assessments of indoor HHCB, dwelling characteristics were carried out in 150 dwellings in Brittany (France). Among the various models that were tested, the best predictive model for the reduced set of characteristics was identified on the basis of the coefficient of determination (R2) criterion. RESULTS: Linear regression model showed among the best performances (R2 = 0.48), together with some more complex models. According to the estimated results, the main variables that significantly increased HHCB concentrations were: living in rural area, drying clothes inside dwellings, painted walls, chipboard furniture, double glazing, damaged floors and duration of bathroom door being kept open. Laminated floors and presence of indoor plants were found to significantly decrease HHCB concentrations. DISCUSSION: The linear model based on objective assessments and questionnaire-derived data about dwelling characteristics and occupants' activities constituted an easy method for predicting indoor air HHCB concentrations. For studies including a large number of dwellings, modeling of HHCB concentrations is cheaper than measuring it in every location. Our methodological procedure can be applied to other indoor air pollutants

    Indoor exposure to particulate matter and volatile organic compounds in dwellings and workplaces and respiratory health in French farmers

    No full text
    Abstract Introduction Few investigations have related objective assessments of indoor air pollutants to respiratory health in farmers, in spite of the many rural environmental hazards to which they are exposed. Chemical air pollution has been particularly neglected. Objective We investigated the relationships of indoor exposure to particulate matter (PM) and volatile organic compounds (VOCs) to respiratory health in farmers. Methods Nineteen VOCs (5 families) and PM (from ultrafine to total suspended particles (TSP)) were objectively assessed in dwellings and workplaces in 109 French farmers during a week. To take into account multiple exposures, scores of exposure were computed for total VOCs and VOCs families. Individuals filled a standardized questionnaire and underwent spirometry with bronchodilation test. Results On average, VOCs concentrations were higher in dwellings than in workplaces. The reverse was observed for PM. When considering the mean concentrations of air pollutants for the whole farm (dwellings + workplaces), asthma (9.3%) was positively associated with elevated exposure to benzene (adjusted odds-ratio (ORa) = 6.64, 95%CI: 1.56–28.27), trichloroethylene (4.80, 1.00–23.30) and halogenated hydrocarbons score (2.9, 95% 1.3–6.8). Early airway obstruction (FEF25–75 < 80%, with normal FEV1 and FVC and FEV/FVC ≥ 70%) (29.8%) was related to elevated exposure to 2-butoxyetylacetate (11.49, 1.55–85.37) and glycol ethers score (2.0; 1.0–4.1) in the whole farm and to PM2.5 (ORa = 5.26, 95% CI: 1.09–25.28) in the granary/stable. The risk of Chronic Obstructive Pulmonary Diseases (FEV/FVC < 70%) (COPD) (4.26%) was found to be larger with elevated exposure to aldehydes (OR = 3.95, 1.09–14.26). Conclusion Indoor chemical air pollution is detrimental to farmers’ respiratory health. More epidemiological investigations with detailed exposure assessments and clinical measures of respiratory effects are needed in rural settings to corroborate these findings

    Indoor air pollution, physical and comfort parameters related to schoolchildren's health: Data from the European SINPHONIE study

    No full text
    Substantial knowledge is available on the association of the indoor school environment and its effect among schoolchildren. In the same context, the SINPHONIE (School indoor pollution and health: Observatory network in Europe) conducted a study to collect data and determine the distribution of several indoor air pollutants (IAPs), physical and thermal parameters and their association with eye, skin, upper-, lower respiratory and systemic disorder symptoms during the previous three months. Finally, data from 115 schools in 54 European cities from 23 countries were collected and included 5175 schoolchildren using a harmonized and standardized protocol. The association between exposures and the health outcomes were examined using logistic regression models on the environmental stressors assessed in classroom while adjusting for several confounding factors; a VOC (volatile organic compound) score defined as the sum of the number of pollutants to which the children were highly exposed (concentration > median of the distribution) in classroom was also introduced to evaluate the mul tiexposu re - outcome association. Schoolchildren while adjusting for several confounding factors. Schoolchildren exposed to above or equal median concentration of PM2.5, benzene, limonene, ozone and radon were at significantly higher odds of suffering from upper, lower airways, eye and systemic disorders. Increased odds were also observed for any symptom (sick school syndrome) among schoolchildren exposed to concentrations of limonene and ozone above median values. Furthermore, the risks for upper and lower airways and systemic disorders significantly increased with the VOCs score. Results also showed that increased ventilation rate was significantly associated with decreased odds of suffering from eye and skin disorders whereas similar association was observed between temperature and upper airways symptoms. The present study provides evidence that exposure to IAPs in schools is associated with various health problems in children. Further investigations are needed to confirm our findings
    corecore