503 research outputs found

    Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

    Get PDF
    Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given

    Cariaco Basin calibration update; revisions to calendar and 14C chronologies for core PL07-58PC

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1161-1187.This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.This work was supported by LLNL (97-ERI-009), DOE (W-7405-Eng-48), and NSF (ATM- 9709563)

    A 14,100 cal B. P. Rocky Mountain locust cache from Winnemucca Lake, Pershing County, Nevada

    Get PDF
    The remains of approximately 1000 (MNI) Rocky Mountain locusts (Melanoplus spretus) from an archaeological cache pit in Crypt Cave, Winnemucca (dry) Lake, Nevada, date to between 14,305–14,067 calendar years before present (95.4 % confidence; 12,238 ± 18 14C yrs. B.P.). The age of this western Great Basin occupation along the shoreline of Lake Lahontan is consistent with occupation of several other Western North American terminal Pleistocene sites dating prior to 14,000 cal. B.P., including distinctive petroglyphs on the western shore of Winnemucca Lake dating as early as 14,800–13,200 cal. B.P

    Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core

    Get PDF
    For over a decade, oceanographers have debated the interpretation and reliability of sediment microfossil records indicating extremely low seawater radiocarbon (14C) during the last deglaciation – observations that suggest a major disruption in marine carbon cycling coincident with rising atmospheric CO2 concentrations. Possible flaws in these records include poor age model controls, utilization of mixed infaunal foraminifera species, and bioturbation. We have addressed these concerns using a glacial–interglacial record of epifaunal benthic foraminifera 14C on an ideal sedimentary age model (wood calibrated to atmosphere 14C). Our results affirm – with important caveats – the fidelity of these microfossil archives and confirm previous observations of highly depleted seawater 14C at intermediate depths in the deglacial northeast Pacific.</p

    Blank assessment for ultra-small radiocarbon samples : chemical extraction and separation versus AMS

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 1322-1335.The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ~0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ~0.6 ± 0.3 μg C, while DC is ~0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ~1% for ~0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined
    • …
    corecore