27 research outputs found

    The Effects of Resistance Training Volume on Skeletal Muscle Proteome

    Get PDF
    International Journal of Exercise Science 10(7): 1051-1066, 2017. Studies are conflicting to whether low volume resistance training (RT) is as effective as high-volume RT protocols with respect to promoting morphological and molecular adaptations. Thus, the aim of the present study was to compare, using a climbing a vertical ladder, the effects of 8 weeks, 3 times per week, resistance training with 4 sets (RT4), resistance training with 8 sets (RT8) and without resistance training control (CON) on gastrocnemius muscle proteome using liquid chromatography mass spectrometry (LC-MS/MS) and cross sectional area (CSA) of rats. Fifty-two proteins were identified by LC-MS/MS, with 39 in common between the three groups, two in common between RT8 and CON, one in common between RT8 and RT4, four exclusive in the CON, one in the RT8, and four in the RT4. The RT8 group had a reduced abundance of 12 proteins, mostly involved in muscle protein synthesis, carbohydrate metabolism, tricarboxylic acid cycle, anti-oxidant defense, and oxygen transport. Otherwise one protein involved with energy transduction as compared with CON group showed high abundance. There was no qualitative protein abundance difference between RT4 and CON groups. These results revealed that high volume RT induced undesirable disturbances on skeletal muscle proteins, while lower volume RT resulted in similar gains in skeletal muscle hypertrophy without impairment of proteome. The CSA was significantly higher in RT8 group when compared to RT4 group, which was significantly higher than CON group. However, no differences were found between trained groups when the gastrocnemius CSA were normalized by the total body weight

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging

    No full text
    Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM). The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT) on metalloproteinase 2 (MMP-2) activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group): young sedentary (YS); young trained (YT), old sedentary (OS), and old trained (OT). The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001). Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001). The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001). With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001) when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling

    Recent progress in L-H transition studies at JET: Tritium, Helium, Hydrogen and Deuterium

    No full text
    We present an overview of results from a series of L-II transition experiments undertaken at JET since the installation of the ITER-like-wall (JET-ILW), with beryllium wall tiles and a tungsten divertor. Tritium, helium and deuterium plasmas have been investigated. Initial results in tritium show ohmic L-H transitions at low density and the power threshold for the L-H transition (P-LH) is lower in tritium plasmas than in deuterium ones at low densities, while we still lack contrasted data to provide a scaling at high densities. In helium plasmas there is a notable shift of the density at which the power threshold is minimum ((n) over bar (e,min)) to higher values relative to deuterium and hydrogen references. Above (n) over bar (e,min) (He) the L-H power threshold at high densities is similar for D and He plasmas. Transport modelling in slab geometry shows that in helium neoclassical transport competes with interchange-driven transport, unlike in hydrogen isotopes. Measurements of the radial electric field in deuterium plasmas show that E-r shear is not a good indicator of proximity to the L-H transition. Transport analysis of ion heat flux in deuterium plasmas show a non-linearity as density is decreased below (n) over bar (e,min). Lastly, a regression of the JET-ILW deuterium data is compared to the 2008 ITPA scaling law

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUN

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text

    Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome

    No full text
    BACKGROUN

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text
    corecore