1,660 research outputs found

    Apparent slow dynamics in the ergodic phase of a driven many-body localized system without extensive conserved quantities

    Full text link
    We numerically study the dynamics on the ergodic side of the many-body localization transition in a periodically driven Floquet model with no global conservation laws. We describe and employ a numerical technique based on the fast Walsh-Hadamard transform that allows us to perform an exact time evolution for large systems and long times. As in models with conserved quantities (e.g., energy and/or particle number) we observe a slowing down of the dynamics as the transition into the many-body localized phase is approached. More specifically, our data is consistent with a subballistic spread of entanglement and a stretched-exponential decay of an autocorrelation function, with their associated exponents reflecting slow dynamics near the transition for a fixed system size. However, with access to larger system sizes, we observe a clear flow of the exponents towards faster dynamics and can not rule out that the slow dynamics is a finite-size effect. Furthermore, we observe examples of non-monotonic dependence of the exponents with time, with dynamics initially slowing down but accelerating again at even larger times, consistent with the slow dynamics being a crossover phenomena with a localized critical point.Comment: 9 pages, 8 figures; added details on the level statistics and the energy absorptio

    Quantum Mutual Information as a Probe for Many-Body Localization

    Full text link
    We demonstrate that the quantum mutual information (QMI) is a useful probe to study many-body localization (MBL). First, we focus on the detection of a metal--insulator transition for two different models, the noninteracting Aubry-Andr\'e-Harper model and the spinless fermionic disordered Hubbard chain. We find that the QMI in the localized phase decays exponentially with the distance between the regions traced out, allowing us to define a correlation length, which converges to the localization length in the case of one particle. Second, we show how the QMI can be used as a dynamical indicator to distinguish an Anderson insulator phase from an MBL phase. By studying the spread of the QMI after a global quench from a random product state, we show that the QMI does not spread in the Anderson insulator phase but grows logarithmically in time in the MBL phase.Comment: 4+2 pages, 5+5 figure

    Many-body localization characterized from a one-particle perspective

    Get PDF
    We show that the one-particle density matrix ρ\rho can be used to characterize the interaction-driven many-body localization transition in closed fermionic systems. The natural orbitals (the eigenstates of ρ\rho) are localized in the many-body localized phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues of ρ\rho) reveals the distinctive Fock-space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition. We analyze the inverse participation ratio of the natural orbitals and find that it is independent of system size in the localized phase.Comment: 5 pages, 3 figures; v2: added two appendices and a new figure panel in main text; v3: updated figur

    Sharp entanglement thresholds in the logarithmic negativity of disjoint blocks in the transverse-field Ising chain

    Get PDF
    Entanglement has developed into an essential concept for the characterization of phases and phase transitions in ground states of quantum many-body systems. In this work, we use the logarithmic negativity to study the spatial entanglement structure in the transverse-field Ising chain both in the ground state and at nonzero temperatures. Specifically, we investigate the entanglement between two disjoint blocks as a function of their separation, which can be viewed as the entanglement analog of a spatial correlation function. We find sharp entanglement thresholds at a critical distance beyond which the logarithmic negativity vanishes exactly and thus the two blocks become unentangled, which holds even in the presence of long-ranged quantum correlations, i.e., at the system's quantum critical point. Using Time-Evolving Block Decimation (TEBD), we explore this feature as a function of temperature and size of the two blocks and present a simple model to describe our numerical observations.Comment: 12 pages, 7 figure

    The structure of an LIM-only protein 4 (LMO4) and deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4

    Get PDF
    LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.SJ was funded by an Australian Postgraduate Award (education.gov.au/australian-postgraduate-awards). JPM and JMM were awarded Senior Research Fellowships from the Australian National and Medical Research Council (www.nhmrc.gov.au). This project was funded by an Australian Research Council (www. arc.gov.au) Discovery Project Grant (DP110104332) to JMM and LC

    Evolution of Quantum Discord and its Stability in Two-Qubit NMR Systems

    Full text link
    We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We first introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.Comment: 9 pages, 7 figures, Phys. Rev. A (in press

    A COMPARATIVE CLINICAL STUDY TO ASSESS THE EFFICACY OF KARIMBIRUMBADI KASHAYAM AND VASAGULUCHYADI KASHAYAM IN PANDUROGA WITH SPECIAL REFERENCE TO IRON DEFICIENCY ANEMIA IN THE REPRODUCTIVE AGE GROUP OF WOMEN

    Get PDF
    This study is an attempt to clinically analyze the independent effect of Karimbirumbadi kashayam and Vasaguluchiadi kashayam in Panduroga and also compare their efficacy. Aims and Objectives: To evaluate the comparative efficacy of Karimbirumbadi kashayam and Vasaguluchyadi kashayam in Panduroga with special reference to iron deficiency anemia in the reproductive age group of women. Methodology: Among 46 registered subjects, 22 were registered in group A and 24were registered in group B. Out of which 20 subjects of A group and 20 subjects of B group completed the study. Group A was administered with 25ml of Karimbirumbadi kashayam with 40ml of luke warm water twice daily before food for 2 months and Group B was administered with 25ml of Vasaguluchyadi kashayam with 40ml of luke warm water and 10ml of Madhu as Anupana twice daily before food for 2 months. Objective and subjective parameters were analyzed using paired T test and Wilcoxon signed rank test respectively. Independent T test and Mann-Whitney U test were used to compare the parameters between the groups. Result: There was statistically significant improvement in the objective and subjective parameters (p<0.05 was observed). Conclusion: The study shows that both Karimbirumbadi kashayam and Vasaguluchyadi kashayam are effective in relieving the symptoms of Panduroga. Symptomatic relief was seen in both the group A & B, but there was no statistically significant difference between the groups in relieving these symptoms
    corecore